Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Уральский технический институт связи и информатики (филиал) в г. Екатеринбурге (УрТИСИ СибГУТИ)

РАБОЧАЯ ПРОГРАММА

по дисциплине «Основы нелинейной оптики»

для основной профессиональной образовательной программы по направлению 11.03.02 «Инфокоммуникационные технологии и системы связи» направленность (профиль) — Технологии и системы оптической связи квалификация — бакалавр форма обучения — очная год начала подготовки (по учебному плану) — 2021

Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Уральский технический институт связи и информатики (филиал) в г. Екатеринбурге (УрТИСИ СибГУТИ)

		Утвержд	аю
)	Директор УрТИСИ СибГУ Т	ΓИ
		Е.А. Мини	на
«	»	2021	Γ.

РАБОЧАЯ ПРОГРАММА

по дисциплине «Основы нелинейной оптики»

для основной профессиональной образовательной программы по направлению 11.03.02 «Инфокоммуникационные технологии и системы связи» направленность (профиль) — Технологии и системы оптической связи квалификация — бакалавр форма обучения — очная год начала подготовки (по учебному плану) — 2021

Рабочая программа дисциплины «Основы нелинейной оптики» составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи» и Положением об организации и осуществления в СибГУТИ образовательной деятельности по образовательным программам высшего образования – программам бакалавриата, программам специалитета, программам магистратуры.

Программу составил:	/ m/	
старший преподаватель	подинсь	/ И.И. Шестаков инициалы, фамилия
должность	подпись	/ инициалы, фамилия
Утверждена на заседании кафедры Заведующий кафедрой (разработчи 31.05.2021 г.		21 протокол № <u>10</u>
Заведующий кафедрой (выпускаюц 31.05.2021 г.	цей) подиись	/ Е.И. Гниломёдов/ инициалы, фамилия
Согласовано Ответственный по ОПОП (руковод 31.05.2021 г.	итель ОПОП)	/Е.И. Гниломёдов/ инициалы, фамилия
новная и дополнительная литература блиотеке института и ЭБС.	, указанная в рабочей	программе, имеется в наличии в
Зав. библиотекой	подпись	/ С.Г. Торбенко инициалы, фамилия

Рабочая программа дисциплины «Основы нелинейной оптики» составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи» и Положением об организации и осуществления в СибГУТИ образовательной деятельности по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры.

старши	й преподаватель		/ И.И. Шестаков
должность		подпись	инициалы, фамилия
/	/		/
,	должность	подпись	инициалы, фамилия
Утверждена н	а заседании кафедры	МЭС от <u>31.05.2021</u>	протокол № 13
Заведующий	кафедрой (разработчика)	подпись	/ Е.И. Гниломёдов/ инициалы, фамилия
31.05.2021	Γ.	подпись	инициалы, фамилия
31.05.2021	Γ.	подпись	инициалы, фамилия
Согласовано			
Ответственны	ій по ОПОП (руководит	ель ОПОП) подпись	/ Е.И. Гниломёдов/ инициалы, фамилия
31.05.2021	Γ.		
овная и допол иотеке инстит		казанная в рабочей пр	рограмме, имеется в наличи
Зав. библиоте	екой	<u>-</u>	/ С.Г. Торбенко
		· · · · · · · · · · · · · · · · · · ·	инициалы, фамилия

1. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина относится к вариативной части учебного плана. Шифр дисциплины в учебном плане – E1.B.15.

ПК-1 Способен к эксплуатации и развитию сетевых платформ, систем и сетей				
передачи данных				
Предшествующие	Основы теории цепей, Основы теории			
дисциплины и практики	электромагнитных полей и волн, Введение в			
	операционную систему Unix, Пакеты прикладных			
	программ, Языки программирования, Элементная база			
	телекоммуникационных систем, Основы построения			
	инфокоммуникационных систем и сетей, Теория связи,			
	Физические основы квантовой оптики, Схемотехника			
	телекоммуникационных устройств, Вычислительная			
	техника и информационные технологии,			
	Микропроцессорная техника в системах связи,			
	Перспективные технологии в отрасли			
	инфокоммуникаций, Сети связи и системы коммутации,			
	Оптоэлектронные и квантовые приборы и устройства,			
Дисциплины и практики,	Активные оптические компоненты, Электропитание			
изучаемые одновременно с	устройств и систем телекоммуникаций, Сетевые			
данной дисциплиной	технологии высокоскоростной передачи данных,			
	Измерения в оптических сетях, Методы и средства			
	измерений в телекоммуникационных системах,			
	Технологическая практика			
Последующие дисциплины	Протоколы и интерфейсы телекоммуникационных			
и практики	систем, Транспортные сети и системы с волновым			
	мультиплексированием, Техническая эксплуатация			
	оптических систем передачи, Управление сетями связи,			
	Оптические мультисервисные сети, Экономика отрасли			
	инфокоммуникаций, Государственная итоговая			
	аттестация			

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины обучающийся должен демонстрировать освоение следующих компетенций по дескрипторам «знания, умения, владения», соответствующие тематическим разделам дисциплины, и применимые в их последующем обучении и профессиональной деятельности:

ПК-1 Способен к эксплуатации и развитию сетевых платформ, систем и сетей передачи данных:

знать:

- теоретические аспекты нелинейных (линейных) явлений, протекающих в волоконной оптике;
- физику процессов нелинейный (линейных) явлений, протекающих в волоконной оптике;
- основные области применения и научно-технические проблемы нелинейной волоконной оптики.

уметь:

- рассчитывать параметры нелинейных (линейных) процессов, протекающих в волоконной оптике;
- идентифицировать, различать механизмы нелинейных (линейных) явлений,
 протекающих в волоконной оптике;
- классифицировать механизмы нелинейных (линейных) явлений, протекающих в волоконной оптике;
- проводить анализ полученных результатов при моделировании, исследовании, и/или изучении нелинейных (линейных) явлений, протекающих в волоконной оптике;
- на теоретическом уровне устранять, компенсировать влияние нелинейных (линейных) процессов, протекающих в волоконной оптике для повышения качества связи.

владеть:

- навыками расчета параметров нелинейных (линейных) процессов, протекающих в волоконной оптике,
- навыками устранения, компенсации нелинейных (линейных) явлений, протекающих в волоконной оптике для повышения качества связи, для увеличения дальности связи;
- умением делать грамотные выводы, грамотный анализ при проявлении нелинейных явлений, протекающих в волоконной оптике.

3. ОБЪЁМ ДИСЦИПЛИНЫ

3.1 Очная форма обучения Общая трудоемкость дисциплины, изучаемой в 3 курсе, составляет 5 зачетных единицы. По дисциплине предусмотрен экзамен.

Виды учебной работы	Всего часов/зачетных	Курс 3	
	единиц	5 сем.	6 сем.
Аудиторная работа (всего)	60/1,66		60
В том числе в интерактивной форме	8/0,22		8
Лекции (ЛК)	24/0,66		24
Лабораторные работы (ЛР)	22/0,61		22
Практические занятия (ПЗ)	12/0,33		12
Предэкзаменационная консультация	2/0,05		2
Самостоятельная работа студентов (всего)	86/2,38		86
Проработка лекций	24/0,66		24
Подготовка к практическим занятиям и оформление отчетов	12/0,33		12
Подготовка к лабораторным занятиям и оформление отчетов	22/0,61		22
Выполнение курсового проекта	-		-
Подготовка к экзамену	28/0,77		28
Контроль	34/0,94		34
Общая трудоемкость дисциплины, часов	180/5		180

Одна зачетная единица (ЗЕ) эквивалентна 36 часам. ** Оставить нужное

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ 4.1 Содержание лекционных занятий

№ раздела	аздела Наименование лекционных тем (разделов) дисциплины и их			
дисцип-	содержание			acax Зд
лины	лины			
1 l	Введение в нелинейную оптику	2		
	Интенсивность света и ее влияние на характер оптических явлений.			
	Линейная и нелинейная оптика. Предмет и задачи нелинейной			
	оптики, история и основные этапы ее развития.			
	Самовоздействия в волоконной оптике	4		
	Понятие о самовоздействиях световых волн. Самофокусировка и			
	самоканализация световых пучков. Оптическая бистабильность.			
	Фазовая самомодуляция и фазовая кросс-модуляция	4		
	Физические процессы, вызывающие ФСМ и ФКМ в оптоволокне.			
	Влияние ФСМ и ФКМ на характе-ристики ВОЛС.			
	Нелинейное рассеяние света и его применение	4		
	Вынужденное комбинационное (рамановское) рассеяние.			
	Вынужденное рассеяние Мандельштама-Бриллюэна.			
	Модели распространения лазерных импульсов в волоконной	1		
	оптике			
	Модели эволюции нелинейных волн. Основные режимы			
	распространения лазерных импульсов. Модуляционная			
	неустойчивость.			
	Оптические солитоны	3		
	Физика образования и основные свойства солитонов. Применение			
	оптических солитонов в волоконной оптике. Схемы солитонных			
+	линий.	1		
	Оптика сверхкоротких импульсов	1		
	Физика генерации коротких и сверхкоротких лазерных импульсов.			
	Методы сжатия оптических импульсов в диспергирующих средах.			
	Измерение длительности сверхкоротких импульсов.	4		
	Параметрические процессы в волоконной оптике Характеристика параметрических процессов. Четырехволновое	4		
	смешение. Параметрическое усиление и его применение.	1		
	Перспективы нелинейной волоконной оптики Основные области применения и научно-технические проблемы	1		
	нелинейной волоконной оптики. Развитие волоконно-оптической			
	связи. Технология WDM. Генерация суперконтинуума. Фотонно-			
	кристаллические волоконные световоды.			
	ВСЕГО	24		

4.2 Содержание практических занятий

No	№ раздела	т Наименование практических занятии — — — — — — — — — — — — — — — — — —		Объем в		
Π/Π	дисциплины			часах		
	, ,		O	3	3д	
1	3	Расчет зависимости рефракционного индекса оптоволокна	2			
	3	от мощности оптического сигнала				
2	3	Построение спектрограмм оптического сигнала с чирп-	2			
	3	эффектом				
3	4	Расчет Стоксовых частот при SBS и SRS явлении	2			
4	6	Расчет параметров оптического солитона	4			
5	8	Расчет спектра оптического сигнала WDM который	2			
	O	подвержен влиянию ЧВС				
		ВСЕГО	12			

4.3 Содержание лабораторных занятий

No	№ раздела	Наименование лабораторных работ		Объем в		
п/п	_			часах		
11/11	дисциплины		О	3	3д	
1	1	Исследование влияния дисперсии оптоволокна на	4			
		оптический сигнал				
2	3	Исследование чирп-эффекта в оптоволокне	4			
3	3	Исследование эффекта фазовой самомодуляции	4			
4	3	Исследование эффекта перекрестной фазовой модуляции	2			
5	6	Исследование оптических солитонов	6			
6	8	Исследование ЧВС в оптической линии связи	2			
		ВСЕГО	22	•	-	

4.4 Курсовой проект Учебным планом не предусмотрено.

5. ПЕРЕЧЕНЬ ИННОВАЦИОННЫХ ФОРМ УЧЕБНЫХ ЗАНЯТИЙ¹

Преподавание дисциплины базируется на результатах научных исследований, проводимых УрТИСИ СибГУТИ, в том числе с учетом региональных особенностей профессиональной деятельности выпускников и потребностей работодателей.

Ŋ	Тема		ем в	Вид	Используемые	
$\Pi/2$			ax*	учебных	инновационные	
11/			3	занятий	формы занятий	
1	Фазовая самомодуляция и фазовая кросс-	4	-	лекция	Интерактивная	
1	модуляция				лекция	
	Исследование чирп-эффекта в оптоволокне	4	-	лаборато	Лабораторная	
2				рная	работа «мозговой	
				работа	штурм»	
	ВСЕГО	8	-			

^{*} Не меньше интерактивных часов

6 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПО ДИСЦИПЛИНЕ

6.1 Список основной литературы

- 1. Беспрозванных В.Г., Первадчук В.П. Нелинейные эффекты в волоконной оптике. Учебное пособие. Пермь: Изд-во ПНИПУ, 2011. 228 с.
- 2. Клюев В.Г. Нелинейные явления в оптоволоконных системах. Учебное пособие. Воронеж: Изд-во ВГУ, 2008. 59 с.

6.2 Список дополнительной литературы

- 1. Воронин В.Г., Наний О.Е. Основы нелинейной волоконной оптики. Учебное пособие. М.: Университетская книга, 2011. 128 с.
- 2. Корель, И. И. Нелинейные волновые уравнения в оптике : учебное пособие / И. И. Корель. Новосибирск: Новосибирский государственный технический университет, 2010. 40 с. ISBN 978-5-7782-1334-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/45120.html
- 3. Татаркина О. А. Технология грубого мультиплексирования с разделением по длине волн СWDM: учебное пособие для студентов высших учебных заведений, обучающихся по направлению подготовки дипломированных специалистов 210400 "Телекоммуникации" / О. А. Татаркина. Екатеринбург: Изд-во УрТИСИ ГОУ ВПО "СибГУТИ", 2009
- 4. Татаркина О. А. Солитонные волоконно-оптические системы передачи с управляемой дисперсией: монография / О. А. Татаркина, Е. А. Субботин. Екатеринбург: Изд-во УрТИСИ ГОУ ВПО "СибГУТИ", 2008

6.3 Информационное обеспечение (в т.ч. интернет- ресурсы).

- <u>1. Полнотекстовая база данных учебных и методических пособий СибГУТИ.</u> http://ellib.sibsutis.ru/cgi-bin/irbis64r_plus/cgiirbis_64_ft.exe?Z21ID=GUEST&C21COM=F& I21DBN=AUTHOR&P21DBN=IRBIS&Z21FLAGID=1. Доступ по логину-паролю.
- 2. Научная электронная библиотека (НЭБ) elibrary http://www.elibrary.ru OOO «Научная Электронная библиотека» г. Москва. Лицензионное соглашение №6527 от 27.09.2010 свободный доступ (необходимо пройти регистрацию).
- 3. Электронная библиотека Российского фонда фундаментальных исследований (РФФИ) http://www.rfbr.ru/rffi/ru/library. Свободный доступ.
- 4 Сектор стандартизации электросвязи (МСЭ-Т), http://www.itu.int/rec/T-REC-G. Свободный доступ.

¹ Учесть развитие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений, лидерских качеств (включая проведение интерактивных лекций, групповых дискуссий, ролевых игр, тренингов, анализ ситуаций и имитационных моделей).

7 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ И ТРЕБУЕМОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Наименование	Вид	Наименование оборудования,
аудиторий, кабинетов, лабораторий	занятий	программного обеспечения
Лекционная аудитория №101 УК№3	Лекционные занятия	Для осуществления образовательного процесса по дисциплине (модулю) используется лекционная аудитории №101 УК№3 для проведения лекционных занятий на 25 посадочных мест, оснащённая проекционным оборудованием и персональным компьютером, работающим под управлением операционной системы Windows 7, офисной мебелью, доской магнитно-маркерной
Лаборатория №203, №312 УК№3	Лабораторная работа	Для проведения лабораторных работ используется лаборатория №203 и №312 оснащённая 9 и 14 рабочими местами, персональными компьютерами, работающим под управлением операционной системы Windows XP и Windows 7, лабораторным оборудованием, офисной мебелью, доской магнитно-маркерной.
Аудитория №203 УК№3	Практические занятия	Для проведения практических занятий используется аудитория №203 оснащённая 20 посадочными местами, доской магнитномаркерной.
По лаборатория для самостоятельной работы студентов №310 УК№3	Самостоятельная работа	Для самостоятельной работы студентов используется лаборатория для самостоятельной работы студентов №310 УК№3, оснащённая офисной мебелью, рабочими местами с персональными компьютерами, работающими под управлением операционной системы Windows 7, 10 — рабочими местами, 14 — посадочными местами, принтером Samsunq ML-2241; аудитория используется для проведения самостоятельной работы студентов кафедры многоканальной электрической связи. Имеется предоставление удалённого доступа к единой научной образовательной электронной среде.

8 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ $_{ m L}$ ДИСЦИПЛИНЫ $^{ m 2}$

8.1 Подготовка к лекционным, практическим и лабораторным занятиям

8.1.1 Подготовка к лекциям

На лекциях необходимо вести конспектирование учебного материала, обращать внимание на категории, формулировки, раскрывающие содержание научных явлений и процессов, научные выводы и практические рекомендации.

Конспектирование лекций — сложный вид аудиторной работы, предполагающий интенсивную умственную деятельность студента. Целесообразно сначала понять основную мысль, излагаемую лектором, а затем записать ее. Желательно оставлять поля, на которых при

_

 $^{^2}$ Целью методических указаний является обеспечение обучающимся оптимальной организации процесса изучения дисциплины.

самостоятельной работе с конспектом можно сделать дополнительные записи и отметить непонятные вопросы.

Конспект лекции лучше подразделять на пункты в соответствии с вопросами плана лекции, предложенными преподавателем. Следует обращать внимание на акценты, выводы, которые делает лектор, отмечая наиболее важные моменты в лекционном материале.

Во время лекции можно задавать преподавателю уточняющие вопросы с целью освоения теоретических положений, разрешения спорных вопросов.

8.1.2 Подготовка к лабораторным работам

Подготовку к лабораторной работе необходимо начать с ознакомления плана и подбора рекомендуемой литературы.

Целью лабораторных работ является углубление и закрепление теоретических знаний, полученных студентами на лекциях и в процессе самостоятельного изучения учебного материала, а, следовательно, формирование у них определенных умений и навыков.

В рамках этих занятий студенты осваивают конкретные методы изучения дисциплины, обучаются экспериментальным способам анализа, умению работать с приборами и современным оборудованием. Лабораторные занятия дают наглядное представление об изучаемых явлениях и процессах, студенты осваивают постановку и ведение эксперимента, учатся умению наблюдать, оценивать полученные результаты, делать выводы и обобщения.

8.1.3 Подготовка к практическим занятиям

Подготовку к практическим занятиям следует начинать с ознакомления плана практического занятия, который отражает содержание предложенной темы. Изучение вопросов плана основывается на проработке текущего материала лекции, а затем изучении основной и дополнительной литературы. Новые понятия по изучаемой теме необходимо выучить и внести в глоссарий, который целесообразно вести с самого начала изучения курса.

Результат такой работы должен проявиться в способности студента свободно ответить на теоретические вопросы практикума, его выступлении и участии в коллективном обсуждении вопросов изучаемой темы, правильном выполнении практических заданий и контрольных работ.

8.2 Самостоятельная работа студентов

Успешное освоение компетенций, формируемых данной учебной дисциплиной, предполагает оптимальное использование времени самостоятельной работы.

Подготовка к лекционным занятиям включает выполнение всех видов заданий, рекомендованных к каждой лекции, т. е. задания выполняются еще до лекционного занятия по соответствующей теме. Целесообразно дорабатывать свой конспект лекции, делая в нем соответствующие записи из литературы, рекомендованной преподавателем и предусмотренной учебной программой.

Все задания к практическим занятиям, а также задания, вынесенные на самостоятельную работу, рекомендуется выполнять непосредственно после соответствующей темы лекционного курса, что способствует лучшему усвоению материала, позволяет своевременно выявить и устранить «пробелы» в знаниях, систематизировать ранее пройденный материал, на его основе приступить к получению новых знаний и овладению навыками.

Самостоятельная работа во внеаудиторное время состоит из:

- повторение лекционного материала;
- подготовки к практическим занятиям и лабораторным работам;
- изучения учебно-методической и научной литературы;
- изучения нормативно-правовых актов;
- решения задач, выданных на практических занятиях;
- подготовки к контрольным работам, тестированию и т. д.;
- подготовки рефератов по заданию преподавателя;
- проведение самоконтроля путем ответов на вопросы текущего контроля знаний, решения представленных в учебно-методических материалах дисциплины задач, тестов, написания рефератов и эссе по отдельным вопросам изучаемой темы.

8.3 Подготовка к промежуточной аттестации

При подготовке к промежуточной аттестации необходимо:

- внимательно изучить перечень вопросов и определить, в каких источниках находятся сведения, необходимые для ответа на них;
 - внимательно прочитать рекомендуемую литературу;
 - составить краткие конспекты ответов (планы ответов).

Освоение дисциплины предусматривает посещение лекционных занятий, выполнение и защиту лабораторных, практических работ, самостоятельной работы.

Текущий контроль достижения результатов обучения по дисциплине включает следующие процедуры:

- -контрольные работы для полусеместровой аттестации;
- -решение индивидуальных задач на практических занятиях;
- -контроль самостоятельной работы, осуществляемый на каждом лабораторном, практическом занятии;
 - -защита лабораторных работ.

Промежуточный контроль достижения результатов обучения по дисциплине проводится в следующих формах:

-экзамен.

Для проведения текущего контроля и промежуточной аттестации используются оценочные средства, описание которых представлено в Приложении 1 и на сайте (http://www.aup.uisi.ru).