Федеральное агентство связи

Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Уральский технический институт связи и информатики (филиал) в г. Екатеринбурге (УрТИСИ СибГУТИ)

РАБОЧАЯ ПРОГРАММА

по дисциплине «Основы теории электромагнитных полей и волн» для основной профессиональной образовательной программы по направлению 11.03.02 «Инфокоммуникационные технологии и системы связи» направленность (профиль) — Транспортные сети и системы связи квалификация — бакалавр форма обучения — очная, заочная год начала подготовки (по учебному плану) — 2020

Федеральное агентство связи

Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Уральский технический институт связи и информатики (филиал) в г. Екатеринбурге (УрТИСИ СибГУТИ)

		Утвержда	аю
		Директор УрТИСИ СибГУТ	ΓИ
		Е.А. Мини	на
‹ ‹	>>	2020	Γ.

РАБОЧАЯ ПРОГРАММА

по дисциплине «Основы теории электромагнитных полей и волн» для основной профессиональной образовательной программы по направлению 11.03.02 «Инфокоммуникационные технологии и системы связи» направленность (профиль) — Транспортные сети и системы связи квалификация — бакалавр форма обучения — очная, заочная год начала подготовки (по учебному плану) — 2020

Рабочая программа дисциплины «Основы теории электромагнитных полей и волн» составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи» и Положением об организации и осуществления в СибГУТИ образовательной деятельности по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры.

Программу составил:	1	
к.т.н., доцент	1_	/ С.А. Баранов
должность	подпись	инициалы, фамилия
		/
должность	подпись	инициалы, фамилия
Утверждена на заседании ОІ кафедры	ПДТС от 29.05.2020	0 протокол № 9
Заведующий кафедрой (разработчика	подпись	/ Н.В. Будылдина/ инициалы, фамилия
29.05.2020 г.		······································
Заведующий кафедрой (выпускающе 29.05.2020 г.	й) подпись	/ Е.А. Субботин/ инициалы, фамилия
Согласовано Ответственный по ОПОП (руководит	ель ОПОП)	/ Е.И. Гниломёдов / инициалы, фамилия
г.		
овная и дополнительная литература, у пиотеке института и ЭБС.	указанная в рабочей п	рограмме, имеется в наличи
Зав. библиотекой	(12)	/ С.Г. Торбенко

Рабочая программа дисциплины «Основы теории электромагнитных полей и волн» составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи» и Положением об организации и осуществления в СибГУТИ образовательной деятельности по образовательным программам высшего образования — программам бакалавриата, программам специалитета, программам магистратуры.

	., доцент	_	/ С.А. Баранов
дол	пжность	подпись	инициалы, фамилия
/	/		/
до	лжность	подпись	инициалы, фамилия
Утверждена кафедры	на заседании	ОПДТС от 29.05.2020	протокол № 9
Заведующий ка	федрой (разработч	ика)	/ Н.В. Будылдина/
29.05.2020		подпись	инициалы, фамилия
29.05.2020	федрой (выпускаю г.	подпись	/ Е.А. Субботин/ инициалы, фамилия
Согласовано Ответственный 29.05.2020	по ОПОП (руково	дитель ОПОП) подпись	/ Е.И. Гниломёдов / инициалы, фамилия
Ответственный 29.05.2020	г. тельная литератур	подпись	

1. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина относится к части, формируемой участниками образовательных отношений учебного плана. Шифр дисциплины в учебном плане – E1.B.02.

ПК-1 –Способен к эксплуатации и развитию сетевых платформ, систем и сетей				
передачи данных				
Предшествующие	Основы теории цепей;			
дисциплины и практики				
Дисциплины и практики,	Введение во операционную систему UNIX; Пакеты			
изучаемые одновременно с	прикладных программ; Языки программирования;			
данной дисциплиной	Элементная база телекоммуникационных систем;			
	Основы построения инфокоммуникационных систем и сетей			
Последующие дисциплины	Теория связи; Физические основы квантовой оптики;			
и практики	Схемотехника телекоммуникационных устройств; Сети			
	связи и системы коммутации; Оптоэлектронные и			
	квантовые приборы и устройства; Основы нелинейной			
	оптики; Активные оптические компоненты;			
	Электропитание устройств и систем телекоммуникаций;			
	Сетевые технологии высокоскоростной передачи данных;			
	Протоколы и интерфейсы телекоммуникационных			
	систем; Транспортные сети и системы с волновым			
	мультиплексированием; Техническая эксплуатация			
	оптических систем передачи; Управление сетями связи;			
	Оптические мультисервисные сети; Экономика отрасли			
	инфокоммуникаций; Вычислительная техника и			
	информационные технологии; Микропроцессорная			
	техника в системах связи; Измерения в оптических сетях;			
	Методы и средства измерения в телекоммуникационных			
	системах.			

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения дисциплины обучающийся должен демонстрировать освоение следующих компетенций по дескрипторам «знания, умения, владения», соответствующие тематическим разделам дисциплины, и применимые в их последующем обучении и профессиональной деятельности:

 ΠK -1 — Способен к эксплуатации и развитию сетевых платформ, систем и сетей передачи данных

Знать:

- принципы построения и работы сети связи и протоколов сигнализации, используемых в сетях связи:
- основы спутниковых технологий, используемых на транспортной сети, принципы построения спутниковых сетей связи;
- законодательство Российской Федерации в области связи, предоставления услуг связи, стандарты в области качества услуг связи;
- методы исследования элементарных излучателей;
- явления, возникающие на границе раздела сред.

Уметь:

- проводить сравнительный анализ свойств и характеристик материалов и элементов телекоммуникационных систем для эксплуатации и развития сетевых платформ, систем и сетей передачи данных;
- -анализировать структуру электромагнитного поля в различных линиях передачи, включая полые и диэлектрические волноводы, а также волоконно-оптические направляющие системы.

Владеть:

- навыками разработки электрических принципиальных схем устройств связи;
- навыками практической работы с современной измерительной аппаратурой.

3. ОБЪЁМ ДИСЦИПЛИНЫ

3.1 Очная форма обучения

Общая трудоемкость дисциплины, изучаемой в 4 семестре, составляет 3 зачетные единицы.

По дисциплине предусмотрен зачет.

Виды учебной работы	Всего часов/зачетных	Семестр
Briggs y rection parents	часов/зачетных единиц	3
Аудиторная работа (всего)	46 / 1,28	46
В том числе в интерактивной форме	2 / 0,05	2
Лекции (ЛК)	20 / 0,56	20
Лабораторные работы (ЛР)	18 /0,5	18
Практические занятия (ПЗ)	8 / 0,22	8
Самостоятельная работа студентов (всего)	53 / 1,47	53
Проработка лекций	-	-
Подготовка к практическим занятиям и оформление отчетов	-	1
Подготовка к лабораторным занятиям и оформление отчетов	-	-
Выполнение курсовой работы	-	-
Выполнение реферата, РГР**	-	-
Подготовка и сдача зачета	4/0,11	4
Контроль	9 / 0,25	9
Общая трудоемкость дисциплины, часов	108	108

Одна зачетная единица (ЗЕ) эквивалентна 36 часам.

^{**} Оставить нужное

3.2 Заочная форма обучения Общая трудоемкость дисциплины, изучаемой в $_3,\underline{4}$ семестрах, составляет $_3$ зачетные единицы. По дисциплине предусмотрен зачет.

Dywyd ywas y masawy	Всего	Сем	естр
Виды учебной работы	часов/зачетных единиц	3	4
Аудиторная работа (всего)	46 / 1,28	46	
В том числе в интерактивной форме	2 / 0,05	2	4
Лекции (ЛК)	20 / 0,56		
Лабораторные работы (ЛР)	18 /0,5		10
Практические занятия (ПЗ)	8 / 0,22		
Самостоятельная работа студентов (всего)	88 / 1,47	34	54
Проработка лекций	-	-	
Подготовка к практическим занятиям и оформление отчетов	-	-	
Подготовка к лабораторным занятиям и оформление отчетов	-	-	
Выполнение курсовой работы	-	-	
Выполнение реферата, РГР**	-	-	
Подготовка и сдача зачета	4/0,11	4	
Контроль	4 / 0,11		4
Общая трудоемкость дисциплины, часов	108/3	36	72

Одна зачетная единица (ЗЕ) эквивалентна 36 часам.

^{**} Оставить нужное

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ

4.1 Содержание лекционных занятий

No	И	Объ	ем в ч	acax
раздела	Наименование лекционных тем (разделов) дисциплины и их		2	2
дисцип-	содержание	О	3	3д
лины	D 06		0.5	
1	Введение. Общие положения дисциплины. Место дисциплины в образовательной программе.	2	0,5	
2	Уравнения электродинамики. Векторы и основные законы	2	0,5	
	электромагнитного поля. Система уравнений Максвелла.		- ,-	
	Материальные уравнения и граничные условия. Уравнения поля для			
	гармонических полей. Комплексная диэлектрическая			
	проницаемость. Принцип перестановочной двойственности.			
3	Основные теоремы электродинамики. Баланс энергии для	2	0,5	
J	произвольного и монохроматического электромагнитного поля.	_	0,0	
	Теоремы единственности и взаимности.			
4	Плоские волны. Решение системы уравнений Максвелла для	2	0,5	
•	плоской однородной волны. Характеристики плоской волны.	_	0,5	
	Особенности и характеристики плоских волн в реальных			
	диэлектриках и проводниках.			
5	Падение плоской волны на границу раздела сред. Формулировка	2	0,5	
3	задачи о падении плоской однородной волны на границу раздела,		0,5	
	поляризация поля. Коэффициенты отражения и прохождения,			
	законы Снеллиуса. Поле на границе с диэлектриком и проводником,			
	коэффициенты отражения и прохождения при нормальном падении			
	плоской волны.			
6	Излучение электромагнитных волн. Методы решения	1	0,5	
O	неоднородных волновых уравнений. Электродинамические	1	0,5	
	потенциалы.			
7	Направляемые волны. Определение и классификация	1	0,5	
•	направляемых волн. Характеристики направляемых волн. Основные	-	,,,	
	типы линий передачи, использующиеся в связи и радиотехнике.			
8	Коаксиальная линия передачи. Структура поля в коаксиале,	2	0,5	
	характеристики волны, волновое сопротивление. Токи на		- ,-	
	проводниках, зависимость их структуры от проводимости и частоты.			
	Затухание и пропускаемая мощность в коаксиале, их зависимость от			
	параметров коаксиала.			
9	Проводные линии передачи. Структура поля и параметры волны в	1	0,5	
-	двухпроводной линии. Токи на проводниках и их зависимость от		- ,=	
	поперечного сечения и частоты. Четырехпроводные линии.			
10	Волноводные линии. Особенности волн в односвязных линиях	2	0,5	
	передачи. Основная и высшие типы волн в прямоугольном			
	волноводе, структура поля, характеристики, токи на стенках. Волны			
	в круглом волноводе, поляризационная неустойчивость волны			
	основного типа. Эллиптические волноводы.			
11	Объемные резонаторы. Отличие поля в объемном резонаторе от	1	0,5	
	поля в волноводе. Использование объемных резонаторов.			
12	Линии передачи конечной длины. Работа линии в режиме	2	0,5	
	передачи мощности, характеристики смешанной волны, особенности		'-	
	распределения поля в линии с потерями. Линии в режиме			
	трансформации сопротивлений, использование трансформаторов и			
	шлейфов. Согласование линий с нагрузками.		1	

4.2 Содержание практических занятий

N.C.	Nr	•	06-		
№	№ раздела	Наименование лабораторных работ, практических занятий		ем в ч	iacax
Π/Π	дисциплины	паименование лаоораторных расот, практических занятии	Ο	3	3д
1	4	Расчет параметров плоской электромагнитной волны	1		
2	5	Нормальное падение плоской электромагнитной волны на	1		
		границу раздела сред.			
3	10	Волна основного типа в прямоугольном волноводе.	2		
4	12	Методы согласования линии передачи с нагрузкой.	2		
		Согласование методом четвертьволнового трансформатора.			
5	12	Методы согласования линии передачи с нагрузкой.	2		
		Согласование методом параллельного шлейфа.			
		ВСЕГО	8	0	

4.3 Содержание лабораторных занятий

	4.5 Содержание паобраторных запятии					
No	№ раздела	Наименование лабораторных работ, практических занятий		ем в ч	acax	
Π/Π	дисциплины	паименование лаоораторных раоот, практических занятии	О	3	3д	
1	4,5	Исследование явления полного внутреннего	4	2		
		отражения при падении электромагнитной волны				
		на границу раздела сред				
2	6	Исследование электромагнитного поля	4			
		элементарных излучателей				
3	2,9	Расчет магнитной индукции в цилиндрическом	2			
		проводнике.				
4	8	Исследование структуры поля в коаксиальной	4	4		
		линии				
5	8,9	Расчёт первичных параметров коаксиального	4	4		
		кабеля				
		ВСЕГО	18	10		

5. ПЕРЕЧЕНЬ ИННОВАЦИОННЫХ ФОРМ УЧЕБНЫХ ЗАНЯТИЙ 1

Преподавание дисциплины базируется на результатах научных исследований, проводимых УрТИСИ СибГУТИ, в том числе с учетом региональных особенностей профессиональной деятельности выпускников и потребностей работодателей.

No		Объ		Вид	Используемые
$\prod_{\Pi/\Pi}$	Тема	час	ax*	учебных	инновационные
11/11		О	3	занятий	формы занятий
1	Линии передачи конечной длины	2		Лекция	Групповая
1					дискуссия
	Методы согласования линии передачи с			Практич	Мастер-класс
	нагрузкой. Согласование методом			еское	Анализ ситуаций
	четвертьволнового трансформатора.			занятие	
	ВСЕГО	4			

^{*} Не меньше интерактивных часов

 $^{^1}$ Учесть развитие у обучающихся навыков командной работы, межличностной коммуникации, принятия решений, лидерских качеств (включая проведение интерактивных лекций, групповых дискуссий, ролевых игр, тренингов, анализ ситуаций и имитационных моделей).

6 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ПО ДИСЦИПЛИНЕ

6.1 Список основной литературы

- 1. Баранов С.А. Устройства СВЧ и антенны: учебное пособие М. Горячая линия Телеком, 2018, 344с.
- 2. Сомов А.М. Электродинамика: учеб. пособие. М.: Горячая линия Телеком, 2011.
- 3. Баранов С.А. Расчет режимов работы и согласований линий передачи: учеб. пособие по дисциплине «Электромагнитные поля и волны»/ С.А. Баранов. Екатеринбург: УрТИСИ Φ ГОБУ ВПО «СибГУТИ», 2015.-80с.

6.2 Список дополнительной литературы

1Фальковский О.И. Техническая электродинамика: учебник. – М.: Лань. 2009 – 432с.

- 2. Петров Б. М. Электродинамика и распространение радиоволн: учеб. для вузов / Б. М. Петров.- 2-е изд., испр.- М.: Горячая линия Телеком, 2007.
- 3. Антенно-фидерные устройства и распространение радиоволн/ Г.А. Ерохин, О.В. Чернов и др. М.: Горячая линия Телеком, 2007 491с.
- 4. Тмофеев В.А. Электромагнитные поля и волны. [Электронный ресурс]. Учебное пособие. Ярославль. ЯрГУ. 2008.c.180 -Режим доступа: https://yandex.ru/clck/2. Демидова, Н. Е.
- 5. Электродинамика. Электростатика : учебное пособие / Н. Е. Демидова, Г. А. Демидов. Нижний Новгород : Нижегородский государственный архитектурно-строительный университет, ЭБС АСВ, 2017. 47 с. ISBN 978-5-528-00220-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/80848.html

6.3 Информационное обеспечение (в т.ч. интернет- ресурсы).

- 1. Официальный сайт UISI.RU/ (дата обращения: 15.05.2019)
- 2. Единая научно-образовательная электронная среда (Е-НОЭС) УрТИСИ http://aup.uisi.ru/
- 3. Электронная библиотечная система «IPRbooks» /http://www.iprbookshop.ru/ доступ по логину и паролю
- 4. Электронный каталог АБК ASBOOK
- 5. Полнотекстовая база данных учебных и методических пособий СибГУТИ http://ellib.sibsutis.ru/cgi-bin/irbis64r_12/cgiirbis_64.exe?LNG=

&C21COM=F&I21DBN=ELLIB&P21DBN=ELLIB&S21FMT=&S21ALL=&Z21ID=&S21CNR= доступ по логину и паролю

- 6. Научная электронная библиотека (НЭБ) elibrary http://www.elibrary.ru
- 7. Единое окно доступа к образовательным ресурсам http://window.edu.ru/

7 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ И ТРЕБУЕМОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Наименование аудиторий, кабинетов, лабораторий Лекционная аудитория	Вид занятий Лекционные занятия	Наименование оборудования, программного обеспечения – компьютер; – мультимедийный проектор; – экран;
		– доска.
Кабинет для практических занятий: Г. Екатеринбург ул. Крауля, 9 (учебный корпус №3) аудитория №210	Лабораторные и практические работы	30 — рабочих мест Офисная мебель Магнитно-маркерная доска Компьютер Intel Celeron 2600МНz (1 шт.) Телевизор ЖК LG 42LM340T (2 шт.) Лабораторное оборудование: - генератор ВЧ Г4-111 (1 шт.); - генератор ВЧ Г4-80 (1 шт.); - прибор Ц 43-15 (1 шт.); - вольтметр В7-38 (4 шт.); - вольтметр В7-58 (4 шт.); - прибор С9-1 (1 шт.); - установка лабораторная «Экспериментальное исследование характеристик направленности источника излучения и поляризации простейших источников электромагнитных волн».
Лаборатория 311 УК№5	Самостоятельная работа	- персональные компьютере подключенные в локальную сеть и сеть Интернет, работающие под управлением операционной системы Windows 7, - программное обеспечение OpenOffice.

8 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ 2

8.1 Подготовка к лекционным, практическим и лабораторным занятиям

На лекциях необходимо вести конспектирование учебного материала, обращать внимание на категории, формулировки, раскрывающие содержание научных явлений и процессов, научные выводы и практические рекомендации.

Конспект лекции лучше подразделять на пункты в соответствии с вопросами плана лекции, предложенными преподавателем. Следует обращать внимание на акценты, выводы, которые делает лектор, отмечая наиболее важные моменты в лекционном материале.

Во время лекции можно задавать преподавателю уточняющие вопросы с целью освоения теоретических положений, разрешения спорных вопросов.

8.2 Самостоятельная работа студентов

_

 $^{^2}$ Целью методических указаний является обеспечение обучающимся оптимальной организации процесса изучения дисциплины.

Успешное освоение компетенций, формируемых данной учебной дисциплиной, предполагает оптимальное использование времени самостоятельной работы.

Подготовка к лекционным занятиям включает выполнение всех видов заданий, рекомендованных к каждой лекции, т. е. задания выполняются еще до лекционного занятия по соответствующей теме. Целесообразно дорабатывать свой конспект лекции, делая в нем соответствующие записи из литературы, рекомендованной преподавателем и предусмотренной учебной программой.

Все задания к лабораторным работам, а также задания, вынесенные на самостоятельную работу, рекомендуется выполнять непосредственно после соответствующей темы лекционного курса, что способствует лучшему усвоению материала, позволяет своевременно выявить и устранить «пробелы» в знаниях, систематизировать ранее пройденный материал, на его основе приступить к получению новых знаний и овладению навыками.

Самостоятельная работа во внеаудиторное время состоит из:

- повторения лекционного материала;
- подготовки лабораторным работам;
- изучения учебно-методической и научной литературы;
- изучения нормативно-правовых актов;
- решения задач, предусмотренных на лабораторных работах;
- подготовки к контрольным работам, тестированию и т. д.;
- подготовки к семинарам устных докладов (сообщений);
- выполнения контрольных работ по заданию преподавателя;
- выполнения курсовых работ (курсовых проектов), предусмотренных учебным планом;
- проведение самоконтроля путем ответов на вопросы текущего контроля знаний, решения представленных в учебно-методических материалах дисциплины задач, тестов, написания рефератов и эссе по отдельным вопросам изучаемой темы.

8.3 Подготовка к промежуточной аттестации

При подготовке к промежуточной аттестации необходимо:

- внимательно изучить перечень вопросов и определить, в каких источниках находятся сведения, необходимые для ответа на них;
- внимательно прочитать рекомендуемую литературу;
- составить краткие конспекты ответов (планы ответов).

Освоение дисциплины предусматривает посещение лекционных занятий, выполнение и защиту лабораторных, практических работ, курсовой работы, самостоятельной работы.

Текущий контроль достижения результатов обучения по дисциплине включает следующие процедуры:

- -контрольные работы для полусеместровой аттестации;
- -решение индивидуальных задач на практических занятиях;
- -контроль самостоятельной работы, осуществляемый на каждом лабораторном, практическом занятии.

Промежуточный контроль достижения результатов обучения по дисциплине проводится в следующих формах:

- зачет (4 семестр).

Для проведения текущего контроля и промежуточной аттестации используются оценочные средства, описание которых расположено в Приложении 1 и на сайте (http://www.aup.uisi.ru)