по дисциплине

Федеральное агентство связи

Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Уральский технический институт связи и информатики (филиал) в г. Екатеринбурге (УрТИСИ СибГУТИ)

ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

по дисциплине «Физика»

для основной профессиональной образовательной программы по направлению 09.03.01 «Информатика и вычислительная техника» направленность (профиль) – Программное обеспечение средств вычислительной техники и автоматизированных систем

квалификация – бакалавр

форма обучения – очная, заочная год начала подготовки (по учебному плану) – 2020

по дисциплине

Федеральное агентство связи

Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Уральский технический институт связи и информатики (филиал) в г. Екатеринбурге (УрТИСИ СибГУТИ)

		Утвержда	аю
)	Циректор УрТИСИ СибГУТ	ΓИ
		Е.А. Мини	на
«	>>	2020	Γ.

ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

по дисциплине «Физика»

для основной профессиональной образовательной программы по направлению 09.03.01 «Информатика и вычислительная техника»

направленность (профиль) – Программное обеспечение средств вычислительной техники и автоматизированных систем

квалификация – бакалавр

форма обучения – очная, заочная

год начала подготовки (по учебному плану) – 2020

1. Перечень компетенций и индикаторов их достижения

Процесс изучения дисциплины направлен на формирование следующих компетенций:

1	Код и наименование	формирование	Предшествующие этапы
Код и наименование	индикатора	Этап	(с указанием
компетенции	достижения компетенций		дисциплин)
ОПК-1. Способен	ОПК-1.1. Знать: основы		,
применять	высшей математики,		
естественнонаучные	физики, основы		
и общеинженерные	вычислительной техники и		
знания, методы	программирования.		
математического	ОПК-1.2. Уметь: решать		
анализа и	стандартные		
моделирования,	профессиональные задачи		
теоретического и	с применением	1	
экспериментального	естественнонаучных и	1	-
исследования в	общеинженерных знаний,		
профессиональной	методов математического		
деятельности	анализа и моделирования.		
	ОПК-1.3. Иметь навыки:		
	теоретического и		
	экспериментального		
	исследования объектов		
	профессиональной		
	деятельности		

Форма(ы) промежуточной аттестации по дисциплине: зачет (1 семестр), экзамен (2 семестр).

2. Показатели, критерии и шкалы оценивания компетенций

2.1 Показателем оценивания компетенций на этапе их формирования при изучении дисциплины является уровень их освоения.

Шкала оценивания	Результаты обучения	Дескрипторы уровней освоения компетенций		
	ОПК-1.1. Знать: фундаментальные законы природы и основные физические и математические законы и методы накопления, передачи и обработки информации			
Низкий (пороговый) уровень Средний уровень	Знает: основы высшей математики, физики, основы вычислительной техники и программирования	Знаком с основами высшей математики, физики и вычислительной техники Знает основы высшей математики, физики, основы вычислительной техники и элементами		
Высокий уровень		программирования Знает твердо основы высшей математики, физики, основы вычислительной техники и программирования		
ОПК-1.2. Уметь: применять физические законы и математически методы для решения задач теоретического и прикладного характера				
Низкий (пороговый) уровень	Умеет: решать стандартные профессиональные задачи с применением естественнонаучных и	Решает стандартные профессиональные задачи с применением естественнонаучных и общеинженерных знаний		

Шкала оценивания	Результаты обучения	Дескрипторы уровней освоения компетенций	
,	общеинженерных знаний,	Решает стандартные профессиональные	
	методов математического	задачи с применением	
Средний	анализа и моделирования	естественнонаучных и	
уровень		общеинженерных знаний, методов	
		математического анализа и	
		моделирования	
		Решает стандартные профессиональные	
		задачи с применением	
Высокий		естественнонаучных и	
уровень		общеинженерных знаний, методов	
		математического анализа и	
		моделирования	
ОПК-1.3. Иметь навыки: теоретического и экспериментального исследования объектов профессиональной деятельности			

Низкий	Имеет: навыки:	Имеет начальные навыки:
(пороговый)	теоретического и	теоретического и экспериментального
	экспериментального	исследования объектов
уровень	исследования объектов	профессиональной деятельности
	профессиональной деятельности	Имеет навыки: теоретического и
Средний		экспериментального исследования
уровень		объектов профессиональной
		деятельности
		Имеет навыки: теоретического и
Высокий		экспериментального исследования
уровень		объектов профессиональной
		деятельности

2.2 Таблица соответствия результатов промежуточной аттестации по дисциплине уровню этапа формирования компетенций

Форма контроля	Шкала оценивания	Код индикатора достижения компетенций	Уровень освоения компетенции	
	VIVOR WATER OF VITA	ОПК-1.1	низкий	
	удовлетворите	ОПК-1.2	средний	
	льно	ОПК-1.3	высокий	
		ОПК-1.1	средний	
Экзамен	хорошо	ОПК-1.2	средний	
			ОПК-1.3	высокий
			ОПК-1.1	высокий
		ОПК-1.2	высокий	
		ОПК-1.3	высокий	
		ОПК-1.1	низкий	
	Зачет Зачтено	ОПК-1.2	низкий	
Зачет		ОПК-1.3	низкий	
		ОПК-1.1	средний	
		ОПК-1.2	высокий	
		ОПК-1.3	высокий	

3. Методические материалы, определяющие процедуры оценивания Процесс оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, представлен в таблицах по формам обучения:

Тип занятия	Тема (раздел)	Оценочные средства			
ОПК-1.1. Знат	ОПК-1.1. Знать: фундаментальные законы природы и основные физические и				
	ше законы и методы накопления, передачи и обработки инфор				
Лекции	Введение	Экзамен,			
	Физические основы механики	зачет			
	Основы молекулярной физики и термодинамики				
	Электричество и магнетизм				
	Колебания и волны				
	Оптика				
	Элементы атомной и квантовой физики				
	Элементы физики твердого тела				
	Элементы ядерной физики	T.0			
Практическа	Кинематика поступательного и вращательного движения	Контрольн			
я работа	материальной точки	ая работа,			
	Динамика поступательного движения материальной точки.	коллоквиу			
	Законы Ньютона	M			
	Механическая работа и энергия. Законы сохранения в				
	механике				
	Вращательное движение твердого тела. Элементы				
	специальной теории относительности.				
	Основы МКТ. Газовые законы.				
	Первое начало термодинамики. Второе и третье начала				
	термодинамики. Цикл Карно. Энтропия				
	Электростатика. Закон Кулона. Электрическое поле.				
	Методы расчета электрических полей. Конденсаторы.				
	Постоянный электрический ток. Законы постоянного тока.				
	Магнитное поле и его характеристики. Методы расчета				
	магнитных полей. Силы Ампера и Лоренца.				
	Явление электромагнитной индукции.				
	Механические колебания и волны.				
	Электромагнитные колебания и волны.				
	Интерференция и дифракция света.				
	Поляризация и дисперсия света. Поглощение света.				
	Законы теплового излучения. Фотоэффект.				
	Волновая функция. Соотношение неопределенностей				
	Гейзенберга. Уравнение Шредингера.				
	Закон радиоактивного распада. Ядерные реакции				
	Простейшие измерения и их обработка. Погрешности				
	измерения физических величин. Определение плотности				
	тел правильной формы	Отчет по			
Лабораторн	Изучение контрольно-измерительных приборов.	лабораторн			
ые работы	Изучение контрольно-измерительных приооров. Наблюдение и измерение периодических сигналов	ой работе,			
ыс рассты	·	коллоквиу			
	Определение емкости конденсатора	М			
	Определение электродвижущей силы источника тока				
	методом компенсации				

	Определение сопротивлений проводников методом Уитсона				
	Снятие кривой намагничивания и петли гистерезиса с				
	помощью осциллографа				
	Сложение однонаправленных и взаимно				
	перпендикулярных колебаний				
	Определение деформации поверхности тела с помощью				
	метода голографической интерферометрии				
	Определение показателя преломления вещества с помощью				
	явления интерференции				
	Определение радиуса кривизны линзы с помощью явления интерференции.				
	Изучение дифракции когерентного излучения в				
	параллельных лучах				
	Определение показателя преломления с помощью явления				
	поляризации света.				
	Поляризация света				
	Исследование внешнего фотоэффекта				
	Изучение рассеяния альфа-частиц				
	Определение первого потенциала возбуждения атомов газа				
	(опыт Франка и Герца)				
	Изучение дифракции электронов на щели				
	Изучение законов радиоактивного распада				
	Производная функций комплексного переменного.				
	Контурные интегралы аналитических функций.				
	Приложения теорем операционного исчисления для				
	расчёта оригиналов и изображений.				
	Решение линейных дифференциальных уравнений и систем				
	методами операционного исчисления.	ICD			
Самостоятел	Все разделы дисциплины (модуля)	КР,			
ьная работа		коллоквиу м, экзамен,			
ОПК-1.2. Ум	зачет ОПК-1.2. Уметь: применять физические законы и математически методы для решения				
	задач теоретического и прикладного характера	1			
Лекции	Введение	Экзамен,			
	Физические основы механики	зачет			
	Основы молекулярной физики и термодинамики				
	Электричество и магнетизм				
	Колебания и волны				
	Оптика				
	Элементы атомной и квантовой физики				
	Элементы физики твердого тела				
	Элементы ядерной физики				
Практическа	Кинематика поступательного и вращательного движения	Контрольн			
я работа	материальной точки	ая работа,			
	Динамика поступательного движения материальной точки.	коллоквиу			
	Законы Ньютона	M			
·					

	Механическая работа и энергия. Законы сохранения в	
	механике	
	Вращательное движение твердого тела. Элементы	
	специальной теории относительности.	
	Основы МКТ. Газовые законы.	
	Первое начало термодинамики. Второе и третье начала	
	термодинамики. Цикл Карно. Энтропия	
	Электростатика. Закон Кулона. Электрическое поле.	
	Методы расчета электрических полей. Конденсаторы.	
	Постоянный электрический ток. Законы постоянного тока.	
	Магнитное поле и его характеристики. Методы расчета	
	магнитных полей. Силы Ампера и Лоренца.	
	Явление электромагнитной индукции.	
	Механические колебания и волны.	
	Электромагнитные колебания и волны.	
	Интерференция и дифракция света.	
	Поляризация и дисперсия света. Поглощение света.	
	Законы теплового излучения. Фотоэффект.	
	Волновая функция. Соотношение неопределенностей	
	Гейзенберга. Уравнение Шредингера.	
	Закон радиоактивного распада. Ядерные реакции	
	Простейшие измерения и их обработка. Погрешности	
	измерения физических величин. Определение плотности	
	тел правильной формы	
	Изучение контрольно-измерительных приборов.	
	Наблюдение и измерение периодических сигналов	
	Определение емкости конденсатора	
	Определение электродвижущей силы источника тока методом компенсации	
	Определение сопротивлений проводников методом Уитсона	
	Снятие кривой намагничивания и петли гистерезиса с помощью осциллографа	Отчет по
Поболожения		лабораторн
Лабораторн ые работы	Сложение однонаправленных и взаимно перпендикулярных колебаний	ой работе,
210 puss 121	Определение деформации поверхности тела с помощью	коллоквиу
	метода голографической интерферометрии	M
	Определение показателя преломления вещества с помощью	
	явления интерференции	
	Определение радиуса кривизны линзы с помощью явления	
	интерференции.	
	Изучение дифракции когерентного излучения в	
	параллельных лучах	
	Определение показателя преломления с помощью явления	
	поляризации света.	
	Поляризация света	

	Исследование внешнего фотоэффекта	
	Определение первого потенциала возбуждения атомов газа	
	(опыт Франка и Герца)	
	Изучение дифракции электронов на щели	
	Изучение законов радиоактивного распада	
	Изучение рассеяния альфа-частиц	
Самостоятел	Все разделы дисциплины (модуля)	KP,
ьная работа		коллоквиу
		м, экзамен, зачет
ОПК-1.3. Име		
	профессиональной деятельности	
Лекции	Введение	Экзамен,
	Физические основы механики	зачет
	Основы молекулярной физики и термодинамики	
	Электричество и магнетизм	
	Колебания и волны	
	Оптика	
	Элементы атомной и квантовой физики	
	Элементы физики твердого тела	
	Элементы ядерной физики	
Практическа	1 1	Voumouru
я работа	Кинематика поступательного и вращательного движения материальной точки	Контрольн ая работа,
n passia	Динамика поступательного движения материальной точки.	коллоквиу
	Законы Ньютона	M
	Механическая работа и энергия. Законы сохранения в	
	механике	
	Вращательное движение твердого тела. Элементы	
	специальной теории относительности.	
	Основы МКТ. Газовые законы.	
	Первое начало термодинамики. Второе и третье начала	
	термодинамики. Цикл Карно. Энтропия	
	Электростатика. Закон Кулона. Электрическое поле.	
	Методы расчета электрических полей. Конденсаторы.	
	Постоянный электрический ток. Законы постоянного тока.	
	Магнитное поле и его характеристики. Методы расчета	
	магнитных полей. Силы Ампера и Лоренца.	
	Явление электромагнитной индукции.	
	Механические колебания и волны.	
	Электромагнитные колебания и волны.	
	Интерференция и дифракция света.	
	Поляризация и дисперсия света. Поглощение света.	
	Законы теплового излучения. Фотоэффект.	
	Волновая функция. Соотношение неопределенностей	
	Гейзенберга. Уравнение Шредингера.	

	Закон радиоактивного распада. Ядерные реакции		
	Простейшие измерения и их обработка. Погрешности		
	измерения физических величин. Определение плотности		
	тел правильной формы		
	Изучение контрольно-измерительных приборов.		
	Наблюдение и измерение периодических сигналов	_	
	Определение емкости конденсатора		
	Определение электродвижущей силы источника тока методом компенсации		
	Определение сопротивлений проводников методом Уитсона		
	Снятие кривой намагничивания и петли гистерезиса с помощью осциллографа		
	Сложение однонаправленных и взаимно перпендикулярных колебаний		
	Определение деформации поверхности тела с помощью	Отчет по	
Лабораторн	метода голографической интерферометрии	лабораторн	
ые работы	Определение показателя преломления вещества с помощью	ой работе, коллоквиу	
	явления интерференции	М	
	Определение радиуса кривизны линзы с помощью явления	1.1	
	интерференции.		
	Изучение дифракции когерентного излучения в		
	параллельных лучах		
	Определение показателя преломления с помощью явления		
	поляризации света.		
	Поляризация света		
	Исследование внешнего фотоэффекта		
	Определение первого потенциала возбуждения атомов газа		
	(опыт Франка и Герца)		
	Изучение дифракции электронов на щели		
	Изучение законов радиоактивного распада		
	Изучение рассеяния альфа-частиц		
Самостоятел	Все разделы дисциплины (модуля)	KP,	
ьная работа		коллоквиу	
		м, экзамен,	
		зачет	

4. Типовые контрольные задания

Представить один пример задания по каждому типу оценочных средств для каждой компетенции, формируемой данной дисциплиной:

1. Практические занятия по дисциплине.

Задания, на выполнение индивидуальных заданий, представлены в электронноинформационной образовательной среде и доступны по URL — http://aup.uisi.ru/2868878/

2. Лабораторные работы по дисциплине (модулю).

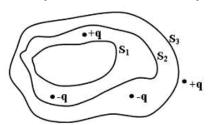
Задания на выполнение лабораторных работ представлены в электронно-информационной образовательной среде и доступны по URL – (http://aup.uisi.ru//2868878/).

3. Самостоятельная работа по дисциплине.

Задания, на выполнение самостоятельной работы, представлены в электронноинформационной образовательной среде и доступны по URL – http://aup.uisi.ru/2868878/

4. Пример билета для устного экзамена.

Федеральное агентство связи		
Уральский технический	Экзаменационный билет	УТВЕРЖДАЮ:
институт связи и информатики	№9	Зав. кафедрой ВМиФ
(филиал) ФГБОУ ВО		
"Сибирский государственный	по дисциплине «Физика»	« <u>04</u> » сентября 2020 г.
университет		
телекоммуникаций и		
информатики"		
в г. Екатеринбурге (УрТИСИ		
СибГУТИ)		


Направление <u>09.03.01</u> "Информатика и вычислительная техника" Уровень <u>Бакалавриат</u> Факультет <u>ИИиУ</u> курс <u>1</u> семестр <u>1</u>

1. Магнитное поле и его характеристики: индукция, напряженность, силовые линии.

Задача. Магнитная индукция однородного магнитного поля равна 0.5 Тл. Определите поток магнитной индукции через поверхность площадью 25 см², расположенную перпендикулярно линиям магнитной индукции. Чему будет равен поток вектора магнитной индукции, если поверхность повернуть на угол 60° от первоначального положения?

2. Сформулируйте теорему Гаусса для электростатического поля в вакууме.

Между какими величинами устанавливает связь эта теорема? Каков ее физический смысл?

 $3a\partial a va$. Дана система точечных зарядов в вакууме и замкнутые поверхности S_1 , S_2 и S_3 . Поток вектора напряженности электростатического поля отличен от нуля через...

- 1) поверхность S_3 2) поверхности S_2 и S_3
- 3) поверхность S_1 4) поверхность S_2
- 5) другой вариант ответа
- 3. Источники тока. Э.д.с. Закон Ома для замкнутой цепи.

Задача. При замыкании источника электрического тока на сопротивление 10 Ом по цепи течет ток 10 A, а при замыкании на сопротивление 4 Ом идет ток 16 A. Найдите внутреннее сопротивление и ЭДС источника тока.

Полпись преполавателя	Ильиных Н.И
ПОЛНИСЬ ПОСПОЛАВАТСЛЯ	ильиных п.и

5. Перечень вопросов для устного экзамена и зачета:

Кинематика материальной точки.

Физические модели: материальная точка, абсолютно твердое тело.

Изотропность и однородность пространства и времени.

Скалярные и векторные величины.

Способы описания движения (координатный, векторный, естественный). Системы отсчета.

Перемещение, траектория, радиус-вектор, пройденный путь.

Скорость. Средняя, мгновенная, средняя путевая скорость.

Ускорение. Среднее и мгновенное ускорение.

Прямолинейное равномерное движение. Уравнение прямолинейного равномерного движения.

Прямолинейное неравномерное движение. Уравнение прямолинейного неравномерного движения.

Криволинейное движение. Тангенциальное и нормальное ускорение.

Вращательное движение материальной точки и его характеристики (угол поворота, угловая скорость, угловое ускорение).

Динамика поступательного движения

Масса и вес тел. Плотность.

Сила. Законы Ньютона.

Импульс тела. Закон сохранения импульса.

Закон всемирного тяготения. Сила тяготения. Гравитационная и инертная масса. Законы Кеплера.

Статика.

Условия равновесия тел.

Простые машины и механизмы.

Работа и энергия.

Работа в механике. Работа, совершаемая постоянной силой. Работа, совершаемая переменной силой.

Кинетическая энергия и теорема о связи энергии и работы.

Консервативные и неконсервативные силы. Потенциальная энергия. Примеры потенциальных энергий.

Закон сохранения энергии в механике.

Коэффициент полезного действия машин.

Абсолютно упругий и абсолютно неупругий удар. Центральный и нецентральный удар.

Механика твердого тела.

Степени свободы; разложение движения на составляющие.

Момент инерции; вычисление момента инерции; моменты инерции простых тел. Терема Гюйгенса-Штейнера.

Момент силы.

Момент импульса. Закон сохранения момента импульса.

Уравнение движения твердого тела.

Работа и энергия движущихся тел.

Аналогия с поступательным движением.

Элементы специальной теории относительности (СТО).

Принцип относительности Галилея. Преобразования Галилея для координат и скоростей.

Постулаты специальной тории относительности.

Преобразования Лоренца. Следствия преобразований Лоренца.

Релятивистская динамика: импульс, масса, работа, энергия.

Границы применимости классической механики.

Молекулярная физика.

Основные положения молекулярно-кинетической теории строения вещества.

Атомы и молекулы. Тепловое движение атомов и молекул.

Броуновское движение. Диффузия.

Распределение молекул по скоростям (распределение Максвелла).

Барометрическая формула.

Температура. Термометры и температурные шкалы.

Идеальный газ. Уравнение состояния идеального газа. Законы идеального газа.

Основное уравнение кинетической теории газов.

Термодинамика. Изолированные системы.

Теплота. Количество теплоты Теплоемкость тела. Уравнение теплового баланса.

Внутренняя энергия. Внутренняя энергия идеального газа.

Различие между температурой, теплотой и внутренней энергией.

Первое начало термодинамики. Энтальпия.

Обратимые и необратимые процессы.

Циклический процесс. Тепловые двигатели. К.п.д. тепловых двигателей. Второе начало термодинамики. Двигатель Карно.

Энтропия. Третье начало термодинамики (теорема Нернста).

Фазовые превращения и равновесия. Фаза. Фазовые переходы. Равновесие двух фаз. Равновесие трех фаз. Фазовые диаграммы. Плавление и кристаллизация. Испарение и конденсация. Метастабильные состояния.

Явления переноса. Диффузия. Теплопроводность. Внутреннее трение. Вакуум.

Электростатика.

Электрические заряды и их свойства. Взаимодействие электрических зарядов. Закон Кулона.

Электрическое поле и его характеристики: напряженность электрического поля, силовые линии, потенциал. Связь напряженности с потенциалом.

Принцип суперпозиции электрических полей.

Работа перемещения заряда в электрическом поле.

Циркуляция и поток вектора напряженности электрического поля.

Поток вектора напряженности электростатического поля. Теорема Гаусса.

Диэлектрики в электрическом поле. Диэлектрическая проницаемость вещества. Поляризация диэлектриков.

Проводники в электрическом поле. Электроемкость проводника.

Конденсаторы. Емкость конденсатора. Соединение конденсаторов.

Энергия электростатического поля.

Законы постоянного электрического тока.

Электрический ток. Сила и плотность тока.

Сопротивление проводников и его температурная зависимость.

Закон Ома для однородного и неоднородного участка цепи.

Э.д.с. Закон Ома для замкнутой цепи.

Законы Кирхгофа.

Работа и мощность тока. Закон Джоуля - Ленца.

Электромагнетизм.

Магнитное поле. Индукция МП. Напряженность МП. Силовые линии МП.

Закон Био - Савара - Лапласа.

Принцип суперпозиции.

Магнитный поток. Теорема Гаусса для магнитных полей.

Теорема о циркуляции вектора магнитной индукции.

Действие магнитного поля на проводник с током. Сила Ампера.

Действие магнитного поля на движущийся заряд. Сила Лоренца.

Магнитный момент контура с током.

Работа по перемещению проводника и контура с током в магнитном поле.

Классификация магнетиков и их основные характеристики (парамагнетики, диамагнетики, ферромагнетики).

Явление электромагнитной индукции. Закон Фарадея. Правило Ленца.

Явление самоиндукции. Индуктивность. Взаимная индукция.

Энергия магнитного поля.

Основы теории Максвелла.

Уравнения Максвелла в интегральной форме, их физический смысл.

Механические колебания.

Общие сведения о колебаниях. Характеристики колебаний: амплитуда, фаза, частота, период.

Свободные гармонические колебания. Дифференциальное уравнение гармонических колебаний и его решение.

Смещение, скорость и ускорение материальной точки при гармонических колебаниях и их графики.

Энергия гармонического колебания. Кинетическая и потенциальная энергия колеблющейся точки.

Гармонический и ангармонический осциллятор. Математический, пружинный и физический маятники.

Затухающие колебания. Дифференциальное уравнение и его решение.

Характеристики затухающих колебаний: коэффициент затухания, логарифмический декремент затухания, добротность, время релаксации. Энергия затухающих колебаний.

Вынужденные колебания. Дифференциальное уравнение и его решение. Зависимость

амплитуды и фазы вынужденных колебаний от частоты внешнего воздействия. Резонанс.

Графическое изображение гармонических колебаний.

Сложение гармонических колебаний одного направления и одной частоты. Биения. Сложение взаимно перпендикулярных колебаний. Уравнение траектории движущейся точки. Фигуры Лиссажу.

Механические волны.

Распространение колебаний в упругой среде (волновое движение). Продольные и поперечные волны.

Волновая поверхность, фронт волны, скорость распространения волн, длина волны, волновой вектор.

Уравнения плоской и сферической волн. Волновое уравнение и его решение.

Энергия бегущих волн. Вектор Умова.

Принцип суперпозиции волн. Групповая скорость.

Когерентность. Интерференция и дифракция волн.

Стоячие волны.

Эффект Доплера.

Отражение и преломление волн.

Звук.

Звуковые волны. Скорость звуковых волн в газах.

Шкала уровней звука. Интенсивность и громкость звука.

Эффект Доплера в акустике.

Ультразвук и его применение. Инфразвук и его применение.

Электромагнитные колебания.

Идеальный колебательный контур.

Свободные электромагнитные колебания. Дифференциальное уравнение и его решение для заряда и тока. Зависимость частоты и периода колебаний от параметров контура. Сдвиг фаз между колебаниями тока и напряжения.

Энергия колебательного контура. Взаимное превращение полей и энергий при колебаниях в контуре.

Затухающие электромагнитные колебания. Дифференциальное уравнение и его решение. Характеристики затухающих электромагнитных колебаний. Открытый колебательный контур.

Вынужденные электромагнитные колебания. Переменный ток. Цепь переменного тока. Закон

Ома. Мощность переменного тока. Резонанс токов и напряжений.

Электромагнитные волны.

Генерация электромагнитных волн. Свойства электромагнитных волн.

Скорость распространения электромагнитных волн.

Перенос энергии электромагнитными волнами. Вектор Умова - Пойнтинга.

Давление электромагнитных волн. Шкала электромагнитных волн.

Интерференция света.

Развитие представлений о природе света.

Монохроматические волны. Когерентные световые волны.

Интерференция света и методы ее наблюдения (метод Юнга, зеркала Френеля и др.).

Расчет интерференционной картины - условия минимумов и максимумов.

Интерференция света в тонких пленках.

Полосы равной толщины. Кольца Ньютона. Полосы равного наклона.

Применение интерференции. Просветленная оптика.

Дифракция света.

Явление дифракции и условия ее наблюдения. Опыт Френеля.

Принцип Гюйгенса-Френеля. Метод зон Френеля.

Дифракция Френеля на круглом отверстии и диске.

Дифракция Фраунгофера на узкой щели.

Дифракционная решетка. Дифракционный спектр. Спектральный анализ.

Плоскостная решетка. Пространственная решетка.

Дифракция рентгеновских лучей. Формула Вульфа - Брэгга.

Поляризация света и элементы кристаллооптики.

Естественный и поляризованный свет.

Поляризация света при отражении и преломлении. Закон Брюстера.

Поляризаторы и анализаторы. Поляризационные призмы и поляроиды. Закон Малюса.

Распространение света в оптически прозрачных кристаллах. Явление двойного лучепреломления.

Анализ поляризованного света. Эффекты Фарадея и Керра.

Взаимодействие электромагнитного излучения с веществом.

Дисперсия света. Объяснение дисперсии на основе классической электронной теории.

Фазовая и групповая скорости. Связь между ними.

Скорость переноса энергии.

Спектральный анализ.

Поглощение (адсорбция) света. Рассеяние света.

Эффект Доплера. Излучение Вавилова-Черенкова

Квантовая природа излучения.

Тепловое излучение и его характеристики. Энергетический спектр излучения.

Закон Кирхгофа. Гипотеза Планка. Формула Планка для излучательной способности абсолютно черного тела.

Законы теплового излучения: законы Планка, Релея - Джинса, Стефана - Больцмана, Вина.

Фотоэлектрический эффект (фотоэффект). Законы внешнего фотоэффекта.

Уравнение Эйнштейна для внешнего фотоэффекта.

Тормозное рентгеновское излучение. Применение фотоэффекта.

Энергия и импульс фотона. Давление света.

Эффект Комптона.

Единство корпускулярных и волновых свойств электромагнитного излучения.

Элементы атомной физики.

Модели атома Томсона и Резерфорда.

Линейчатый спектр атома водорода.

Постулаты Бора. Строение атома по Бору.

Опыты Франка и Герца.

Спектр атома водорода по Бору.

Элементы квантовой механики.

Корпускулярно-волновой дуализм свойств вещества.

Гипотеза де Бройля. Опыты по дифракции микрочастиц. Волны де Бройля.

Соотношение неопределенностей.

Волновая функция и ее статистический смысл. Общее уравнение Шредингера.

Стационарные состояния. Уравнение Шредингера для стационарных состояний.

Принцип причинности в квантовой механике.

Описание свободного движения частиц.

Движение квантовой частицы в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками».

Квантование энергии. Нулевые колебания.

Вероятность нахождения частиц внутри потенциальной ямы.

Квантовый гармонический осциллятор.

Поведение частицы вблизи потенциальных барьеров.

Туннельный эффект. Прозрачность барьера. Термоэлектронная эмиссия.

Элементы современной физики атомов и молекул.

Квантовая модель атома водорода и ее сравнение с боровской моделью.

Квантование энергии, момента импульса.

Квантовые числа. Спектр атома водорода. Правила отбора.

Опыт Штерна и Герлаха. Спин электрона. Спиновое квантовое число.

Тождественные частицы. Фермионы и бозоны.

Принцип Паули. Распределение электронов в атоме по состояниям.

Периодическая система элементов Д. И. Менделеева.

Рентгеновские спектры, закон Мозли.

Молекулы: химические связи, энергетические уровни.

Молекулярные спектры. Поглощение и излучение энергии. Лазеры.

Элементы квантовой статистики.

Квантовая статистика. Фазовое пространство. Функция распределения.

Квантовые статистики Бозе - Эйнштейна и Ферми - Дирака.

Вырожденный электронный газ в металлах.

Квантовая теория теплоемкости. Фононы.

Квантовая теория электропроводности металлов.

Сверхпроводимость. Высокотемпературная сверхпроводимость.

Элементы физики твердого тела.

Элементы зонной теории твердых тел.

Электропроводность. Металлы, диэлектрики, полупроводники.

Собственная и примесная проводимость полупроводников.

Фотопроводимость полупроводников.

Контактные явления. Контактная разность потенциалов.

Контакт двух металлов. Контакт металл-полупроводник.

Контакт электронного и дырочного полупроводников (р-п переход)

Элементы физики атомного ядра и элементарных частиц.

Состав атомного ядра. Характеристики атомного ядра. Изотопы.

Свойства и природа ядерных сил. Энергия связи ядер.

Ядерные реакции и законы сохранения.

Возможность выделения энергии при реакциях деления тяжелых и синтеза легких ядер.

Радиоактивность. Закон радиоактивного распада. Активность радиоактивного вещества.

Закономерности и природа α и β-распадов и γ-излучения атомных ядер.

Ядерные реакции.

Космическое излучение. Мюоны и мезоны.

Типы взаимодействий элементарных частиц.

Частицы и античастицы. Гипероны.

Классификация элементарных частиц. Кварки.

5. Примерные задачи:

Студент проехал половину пути на велосипеде со скоростью $v_1 = 16$ км/ч. Далее половину оставшегося времени он ехал со скоростью $v_2 = 12$ км/ч, а затем до конца пути шел пешком со скоростью $v_3 = 5$ км/ч. Определить среднюю скорость движения студента на всем пути.

- 2. Ядро массой m = 5кг бросают под углом $\alpha = 60^{\circ}$ к горизонту, затрачивая при этом работу 500 Дж. Пренебрегая сопротивлением воздуха, определить: 1) через какое время t ядро упадет на землю; 2) какое расстояние S по горизонтали оно пролетит.
- 3. Во сколько раз увеличивается продолжительность жизни нестабильной частицы (по часам неподвижного наблюдателя), если она начинает двигаться со скоростью, составляющей 99% скорости света?
- 4. Газ при 300 К занимает некоторый объем. До какой температуры его следует охладить изобарно, чтобы объем уменьшился на 25 %?
- 5. Плоский воздушный конденсатор зарядили до некоторой разности потенциалов. Затем конденсатор, не отключая его от источника напряжения, заполнили диэлектриком. Определите диэлектрическую проницаемость диэлектрика, если отношение заряда воздушного конденсатора к заряду конденсатора с диэлектриком равно 0.25.
- 6. Вольтметр, соединенный последовательно с сопротивлением $R_1 = 10$ кОм, при включении в сеть с напряжением $U_0 = 220$ В, показывает напряжение $U_1 = 70$ В, а соединенный

- последовательно с сопротивлением R_2 , показывает напряжение $U_2 = 20$ В. Найдите сопротивление R_2 . Внутренним сопротивлением источника пренебречь.
- 7. Тело массой m = 5 кг совершает затухающие колебания. В течение времени t= 50 с тело потеряло 60% своей энергии. Определите коэффициент сопротивления среды r.
- 8. Длина λ электромагнитной волны в вакууме, на которую настроен колебательный контур, равна 12 м. Пренебрегая активным сопротивлением контура, определить максимальный заряд q_m на обкладках конденсатора, если максимальная сила тока в контуре $I_m = 1$ A.
- 9. На щель шириной a=0,1 м нормально падает параллельный пучок света от монохроматического источника ($\lambda=0,6$ мкм). Определить ширину L центрального максимума в дифракционной картине, проецируемой с помощью линзы, находящейся непосредственно за щелью, на экран, отстоящий от линзы на расстоянии h=1 м.
- 10. Параллельный пучок света падает нормально на пластинку из исландского шпата толщиной 50 мкм, вырезанную параллельно оптической оси. Принимая показатели преломления исландского шпата для обыкновенного и необыкновенного лучей соответственно $n_0 = 1.66$ и $n_e = 1.49$, определите оптическую разность хода этих лучей, прошедших через пластинку.
- 11. АЧТ находится при температуре T1=2900 К. В результате остывания этого тела длина волны, на которую приходится максимум спектральной плотности энергетической светимости изменилась на $\Delta\lambda=9$ мкм. До какой температуры T2 охладили тело?
- 12. Определить для фотона с длиной волны $\lambda = 0.5$ мкм: 1) его массу (m); 2) энергию (ε) ; 3) импульс (p).
- 13. Чему равен запирающий потенциал для калиевого фотокатода при облучении его фиолетовым светом с длиной волны $\lambda = 420$ нм? Работа выхода A = 2 эВ. Определите массу фотона падающего света.
- 14. Фотон с длиной волны $\lambda = 5$ пм испытал комптоновское рассеяние под углом $\theta = 90$ о на первоначально покоившемся свободном электроне. Определить энергию и импульс электрона отдачи.
- 15. Заряженная частица, ускоренная разностью потенциалов U = 200 B, имеет длину волны де Бройля 2,02 пм. Найти массу частицы, если ее заряд численно равен заряду электрона.
- 16. Время жизни атома в возбужденном состоянии t = 10 нс. Учитывая, что постоянная Планка $\hbar = 6.6 \cdot 10^{-16} \ \mathrm{pB \cdot c}$, определите ширину энергетического уровня (в эВ).
- 17. Определить длину волны спектральной линии, соответствующую переходу электрона в атоме водорода с шестой боровской орбиты на вторую. К какой серии относится эта линия? Которая она по счёту?
- 18. Частица находится в основном состоянии одномерной прямоугольной ямы ширины 1 с абсолютно непроницаемыми стенками (0 < x > L). Найти вероятность нахождения частицы в области 1/2L < x > 2/3L.
- 19. Учитывая принцип запрета Паули, определите максимальное число электронов, которые могут находиться на энергетическом уровне с n = 5.
- 20. Заполненной электронной оболочке соответствует главное квантовое число n=4. Определите число электронов на этой оболочке, которые имеют одинаковое магнитное квантовое число ml=0.

6. Банк контрольных заданий и иных материалов, используемых в процессе процедур текущего контроля и промежуточной аттестации

Представлен в электронной информационно-образовательной среде по URI: https://eios.sibsutis.ru/, https://ndo.sibsutis.ru/Teachers_Page/courses.aspx.

Оценочные средства рассмотрены и утверждены на заседании кафедры ВМиФ

Оценочные средства рассмотрены и утверждены на заседании кафедры ВМиФ				
	14.05.2020 г	Протокол № 9		
Заведующий кафо	едрой (разработчика)		В.Т. Куанышев	
		подпись	инициалы, фамилия	
14.05.2020	Γ.			