Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики»

(СибГУТИ)

Уральский технический институт связи и информатики (филмал) в г. Екатеринбурге (УрТИСИ СибГУТИ)

> директор УрТИСИ СибГУТИ Минина Е.А.

ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ **АТТЕСТАЦИИ**

по дисциплине Б1.В.02 Антенны и распространение радиоволн

Направление подготовки / специальность: 11.03.02 «Инфокоммуникационные

технологии и системы связи»

Направленность (профиль) /специализация: Инфокоммуникационные

технологии в услугах связи

Форма обучения: очная

Год набора: 2023

Разработчик (-и):

доцент

/ С.А. Баранов /

Оценочные средства обсуждены и утверждены на заседании инфокоммуникационных технологий и мобильной связи (ИТиМС)

Протокол от 25.05.2023 г. № 9

Заведующий кафедрой_

/ Н.В. Будылдина /

Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет телекоммуникаций и информатики» (СибГУТИ)

Уральский технический институт связи и информатики (филиал) в г. Екатеринбурге (УрТИСИ СибГУТИ)

		УТВЕРЖДАЮ
дирек	тор Ур	ТИСИ СибГУТИ
		Минина Е.А.
‹ ‹	>>	2023 г.

ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

ПО ДИСЦИПЛИНЕ Б1.В.02 Антенны и распространение радиоволн

Направление подготовки / специальность: 11.03.02 «Инфокоммуникационные технологии и системы связи»

Направленность (профиль) /специализация: Инфокоммуникационные технологии в услугах связи

Форма обучения: очная

Год набора: 2023

Разработчик (-и):
доцент ______ / С.А. Баранов /
подпись

Оценочные средства обсуждены и утверждены на заседании инфокоммуникационных

подпись

технологий и мобильной связи (ИТиМС)

Протокол от 25.05.2023 г. № 9 Заведующий кафедрой

/ Н.В. Будылдина /

1. Перечень компетенций и индикаторов их достижения

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Код и наименование	Код и наименование		Предшествующие этапы
	индикатора достижения	Этап	(с указанием
компетенции	компетенций		дисциплин/практик)
ПК-1 Способен к	ПК-1.1 Знает теоретические		
	основы электросвязи и		
проведению профилактических	инфокоммуникационных	3	
работ на оборудовании	технологий, основы построения		
связи	взаимосвязанных		
СВЯЗИ	телекоммуникационных сетей		
ПК-3 Способен к	ПК-3.2 Знает принципы действия,		
выявлению,	конструкции и параметры		
локализации и	компонентов и устройств		
устранению	телекоммуникационных систем		
неисправности на	ПК-3.3 Умеет локализовать	3	
оборудовании связи,	неисправности станционного		
10,	оборудования, восстанавливать		
	основную схему организации		
организации связи	связи		

Форма промежуточной аттестации по дисциплине – экзамен

2. Показатели, критерии и шкалы оценивания компетенций

2.1. Показателем оценивания компетенций на этапе их формирования при изучении дисциплины является уровень их освоения.

Индикатор освоения	Показатель оценивания	Критерий оценивания				
компетенции						
ПК-1 Способен к	Знает:	Демонстрирует уверенные знания				
проведению	– Знает теоретические	теоретические основы электросвязи и				
профилактических работ	основы электросвязи и	инфокоммуникационных технологий,				
на оборудовании связи	инфокоммуникационных	основы построения взаимосвязанных				
	технологий, основы	телекоммуникационных сетей, методы				
	построения	исследования элементарных				
	взаимосвязанных	излучателей; функции антенн в составе				
	телекоммуникационных	радиоканале, первичные и вторичные				
	сетей	характеристики антенн, работу антенн				
	Умеет:	в режиме приема и передачи.				
	– проводить сравнительный	– явления, возникающие на границе				
	анализ свойств и	раздела сред				
	характеристик материалов	Умеет применять основные расчетные				
	и элементов	формулы, для расчета параметров				
	телекоммуникационных	антенн, умеет пояснять их на экзамене;				
	систем для эксплуатации и	в отчетах по практическим работам и				
	развития сетевых	приведены основные расчетные				
	платформ, систем и сетей	формулы передаточных параметров,				
	передачи данных;					

- анализировать структуру при этом в расчетах отсутствуют электромагнитного поля в ошибки. различных линиях передачи При лабораторных, защите формулирует включая полые практических работ диэлектрические выводы по полученным результатам. волноводы, также волоконно-оптические направляющие системы. Владеет: навыками разработки электрических принципиальных схем устройств связи; навыками практической работы современной измерительной аппаратурой. ПК-3 Способен Знает: Демонстрирует уверенные знания выявлению. теоретические основы электросвязи и принципы действия, конструкции и параметры инфокоммуникационных технологий, локализации И устранению компонентов и устройств основы построения взаимосвязанных телекоммуникационных телекоммуникационных сетей, методы неисправности на оборудовании связи. систем); исследования элементарных восстановлению схемы – новейшее оборудование и излучателей; функции антенн в составе программное обеспечение; радиоканале, первичные и вторичные организации связи общие принципы характеристики антенн, работу антенн в режиме приема и передачи. функционирования аппаратных, программных - явления, возникающие на границе и программно-аппаратных раздела сред средств сетевых платформ; Умеет применять основные расчетные для расчета параметров -функции антенн в составе формулы, радиоканале. антенн, умеет пояснять их на экзамене; в отчетах по практическим работам и первичные и вторичные характеристики антенн. расчетные приведены основные -работу антенн в режиме формулы передаточных параметров, при этом в расчетах отсутствуют прием и передачи. Умеет: ошибки. При лабораторных, заппите - собирать и анализировать практических работ формулирует данные о работе узлов сети; выводы по полученным результатам – рассчитывать параметры электрических цепей узлов сетей связи; использовать нормативно-техническую документацию при разработке инструкции по эксплуатационнотехническому обслуживанию; использовать

> современные информационно

коммуникационные технологии, в том числе специализированное программное обеспечение для решения задач проектирования И проведения расчетов; – осуществлять мониторинг и анализировать статистику основных показателей эффективности радиосистем систем И передачи данных; разрабатывать мероприятия поддержанию системы на требуемом уровне

Владеет: – навыками разработки схемы организации связи и интеграции в нее новых элементов;

навыками проведения регламентных работ

Шкала оценивания.

5-балльная шкала	Критерии оценки
Отлично	1. Самостоятельно и правильно ответил на поставленные теоретические вопросы экзаменационного билета. Уверенно, логично, последовательно и аргументировано излагает свой ответ. Может ответить на дополнительные вопросы. 2. Самостоятельно и правильно решил задачу экзаменационного билета. Уверенно и логично объясняет ход решения. Студент усвоил основную литературу и знаком с дополнительной литературой, рекомендованной программой, свободно оперирует приобретенными знаниями, умениями, применяет их при выполнении заданий.
Хорошо	1. Самостоятельно ответил на поставленные теоретические вопросы экзаменационного билета. Не уверенно отвечает на уточняющие и дополнительные вопросы. 2. Самостоятельно и правильно решил задачу экзаменационного билета. Уверенно и логично объясняет ход решения. Допущены ошибки при решении задач
Удовлетворительно	1. Самостоятельно ответил на поставленные теоретические вопросы экзаменационного билета. При этом допускает ошибки. Не уверенно или вообще не отвечает на уточняющие и дополнительные вопросы. 2. Решил задачу экзаменационного билета. При наличии ошибок, может исправить их за счет наводящих вопросов. Не уверенно объясняет ход решения задачи.
Неудовлетворительно	1. Не решена задача экзаменационного билета. 2. Решена задача, но не даны ответы на теоретические вопросы экзаменационного билета.

3. Методические материалы, определяющие процедуры оценивания по дисциплине

3.1. В ходе реализации дисциплины используются следующие формы и методы текущего контроля

Тема и/или раздел	Формы/методы текущего		
	контроля успеваемости		

ПК-1 Способен к проведению профилактических работ на оборудовании связи

Знает:

— Знает теоретические основы электросвязи и инфокоммуникационных технологий, основы построения взаимосвязанных телекоммуникационных сетей

Умеет:

- проводить сравнительный анализ свойств и характеристик материалов и элементов телекоммуникационных систем для эксплуатации и развития сетевых платформ, систем и сетей передачи данных;
- анализировать структуру электромагнитного поля в различных линиях передачи включая полые и диэлектрические волноводы, а также волоконно-оптические направляющие системы.
 Владеет:
- навыками разработки электрических принципиальных схем устройств связи;
- навыками практической работы с современной измерительной аппаратурой.

Экзамен
Экзамен
Экзамен
Лабораторная работа
Практическая работа
Экзамен
Лабораторная работа
Практическая работа
Экзамен
Лабораторная работа
Практическая работа
Экзамен
Лабораторная работа
Экзамен
Экзамен
Практическая работа
Экзамен
Лабораторная работа
Экзамен
Практическая работа

ПК-3 Способен к выявлению, локализации и устранению неисправности на оборудовании связи, восстановлению схемы организации связи Знает:

принципы действия, конструкции и параметры компонентов и устройств телекоммуникационных систем);

- новейшее оборудование и программное обеспечение;
- общие принципы функционирования аппаратных, программных и программно-аппаратных средств сетевых платформ;
- -функции антенн в составе радиоканале.

первичные и вторичные характеристики антенн.

-работу антенн в режиме прием и передачи.

Умеет:

- собирать и анализировать данные о работе узлов сети;
- рассчитывать параметры электрических цепей узлов сетей связи;
- использовать нормативно-техническую документацию при разработке инструкции по эксплуатационно-техническому обслуживанию;
- использовать современные информационно-коммуникационные технологии, в том числе специализированное программное обеспечение для решения задач проектирования и проведения расчетов;
- осуществлять мониторинг и анализировать статистику основных показателей эффективности радиосистем и систем передачи данных;
- разрабатывать мероприятия по поддержанию системы на требуемом уровне

Владеет: – навыками разработки схемы организации связи и интеграции в нее новых элементов;

– навыками проведения регламентных работ

Раздел 1 Введение	Экзамен
Раздел 2 Общие свойства электромагнитного поля	Экзамен
Раздел 3 Фидерные системы.	Экзамен
	Лабораторная работа
	Практическая работа
Раздел 4 Плоские волны	Экзамен
	Лабораторная работа
	Практическая работа
Раздел 5 Излучение электромагнитных волн.	Экзамен
	Лабораторная работа
	Практическая работа
Раздел 6 Антенны	Экзамен
	Лабораторная работа
Раздел 7 Общие вопросы распространения радиоволн	Экзамен
Раздел 8 Атмосфера Земли и её влияние на распространение	Экзамен
радиоволн	Практическая работа
Раздел 9 Затухание радиоволн в канале распространения.	Экзамен
Помехи.	Лабораторная работа
Раздел 10 Заключение	Экзамен
	Практическая работа

3.2. Типовые материалы текущего контроля успеваемости обучающихся

ПК-1 Способен к проведению профилактических работ на оборудовании связи

Знает:

- Знает теоретические основы электросвязи и инфокоммуникационных технологий, основы построения взаимосвязанных телекоммуникационных сетей
 Умеет:
- проводить сравнительный анализ свойств и характеристик материалов и элементов телекоммуникационных систем для эксплуатации и развития сетевых платформ, систем и сетей передачи данных;
- анализировать структуру электромагнитного поля в различных линиях передачи включая полые и диэлектрические волноводы, а также волоконно-оптические направляющие системы.
 Владеет:
- навыками разработки электрических принципиальных схем устройств связи;
 - навыками практической работы с современной измерительной аппаратурой.

ПК-3 Способен к выявлению, локализации и устранению неисправности на оборудовании связи, восстановлению схемы организации связи

Знает:

- -принципы действия, конструкции и параметры компонентов и устройств телекоммуникационных систем);
- новейшее оборудование и программное обеспечение;
- общие принципы функционирования аппаратных, программных и программно-аппаратных средств сетевых платформ;
- -функции антенн в составе радиоканале.

первичные и вторичные характеристики антенн.

-работу антенн в режиме прием и передачи.

Умеет:

- собирать и анализировать данные о работе узлов сети;
- рассчитывать параметры электрических цепей узлов сетей связи;
- использовать нормативно-техническую документацию при разработке инструкции по эксплуатационно-техническому обслуживанию;
- использовать современные информационно-коммуникационные технологии, в том числе специализированное программное обеспечение для решения задач проектирования и проведения расчетов;
- осуществлять мониторинг и анализировать статистику основных показателей эффективности радиосистем и систем передачи данных;
- разрабатывать мероприятия по поддержанию системы на требуемом уровне

Владеет: — навыками разработки схемы организации связи и интеграции в нее новых элементов; — навыками проведения регламентных работ

Практическая работа по теме «Расчет множителя затухания поля в области прямой видимости»

1 Задание:

- 1.1. Рассчитать амплитуду поля передатчика мощностью 1 кВт на дальности 30 км.
- 1.2.Определить плотность потока мощности базовой станции с передатчиком мощностью 200 Вт на расстоянии 15 км. Антенна базовой станции имеет коэффициент усиления 12 и запитана кабелем длиной 50 м с коэффициентом затухания 1 дБ/м

- 1.3. Рассчитать уровень сигнала на входе сотового телефона f=950 МГц, если мощность передатчика базовой станции 100 Вт, коэффициент усилении 30, длина кабеля 40 м, коэффициент затухания 0,5 дБ/м. Коэффициент усиления антенны сотового телефона 2,0
- 1.4.Определить дальность зоны приема для условия предыдущей задачи, если чувствительность приемника сотового телефона равна 15 мкВт.
- 1.5.Сравнить уровень сигнала для условия задачи 3 для каналов GSM-900 и GSM-1800.
- 1.6.Вычислить коэффициент основных потерь для одного пролета радиорелейной линии связи длиной 40 км. Частота канала 14,5 ГГц. Коэффициент усиления антенн 43дБ.
- 1.7.Записать выражение для поля приемника в приближении плоской задачи, если Рпер=10 Вт, дальность 10 км, высоты антенн 15 и 20 м, f=900 М Γ ц.
- 1.8.Для условия задачи 7 рассчитать модуль множителя ослабления если коэффициент отражения
- 1.9.Для условия задачи 7 найти границу области Введенского.
- 1.10.Построить зависимость V(r) при приближении плоской Земли для Екатеринбургского телецентра h1=180м, h2=20м, f=70 М Γ ц,
- 1.11.Определить границу области Введенского в приближении плоской поверхности и рассчитать в ней зависимость поля от дальности для передатчика «радио СК». h1=2m, h2=20m, $f=100M\Gamma$ ц, Pnep=2 кВт
- 1.12. Рассчитать приведенные высоты антенн пролета РРЛ при h1=100м, h2=20м, в зависимости от r. Определить расстояние видимости
- 1.13. Определить границу области Введенского в приближении сферической Земли для условий задачи 11
- 1.14. Рассчитать коэффициент расходимости луча для радиолинии h1=50м, h2=30м, r=30 км
- 1.15. Построить зависимость V(r) для условий задачи 10 при сферической поверхности Земли и с учетом расходимости луча.

2 Исходные данные:

В области прямой видимости возможны два механизма распространения радиоволн: прямой (свободно распространяющийся) волной и отраженной волной. Для антенн, располагающихся вблизи отражающих поверхностей (поверхность земли, элементы конструкций транспортных средств, зданий и т.д.), оба этих механизма реализуются одновременно и суммарное поле представляет интерференцию волн.

Распространение прямой волной в реальных условиях встречается очень редко (связь между самолетами на большой высоте или космическими станциями), но его исследование необходимо для выяснения затухания поля, связанного с его пространственной структурой. Это решение используется, помимо прочего, в качестве исходного при анализе других механизмов распространения.

Все антенны в дальней зоне излучают сферическую волну. Для изотропной (ненаправленной) антенны плотность потока мощности (модуль вектора Пойнтинга) на поверхности охватывающей сферы в дальней зоне определяется соотношением: $\left|\dot{\bar{\Pi}}\right| = P_{\text{пер}}/(4\pi R^2)$, где $P_{\text{пер}}$ — мощность излучаемая передающей антенной, R- радиус сферы. Модуль вектора Пойнтинга определяется и через амплитуду электрического поля по известному соотношению: $\left|\dot{\bar{\Pi}}\right| = \frac{1}{2} \cdot \frac{|\bar{E}|^2}{W}$, где $W=120\pi$ — характеристическое сопротивление свободного пространства. Сравнивая эти два соотношения получим:

$$|E| = \frac{\sqrt{60 \cdot P_{\text{пер}}}}{R} \left[\frac{B}{M} \right], \tag{1}$$

где |Е| - амплитуда поля на поверхности сферы.

В реальных радиолиниях используются направленные антенны, которые подключаются к приемнику и передатчику через фидерные тракты, имеющие потери (рисунок 3.1)

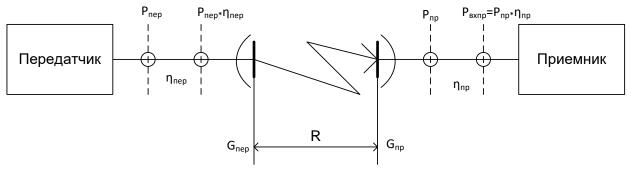


Рисунок 3.1 - Направленные антенны

На рисунке: $P_{\text{пер}}$ и $P_{\text{вхпр}}$ — мощность передатчика и на входе приемника; $\eta_{\text{пер}}$, $\eta_{\text{пр}}$ — коэффициенты полезного действия, передающего и приемного антенно-фидерных трактов; $G_{\text{пер}}$, $G_{\text{пр}}$ — коэффициенты усиления приемной и передающей антенн, учитывающие их направленные свойства и потери.

Плотность потока мощности у приемной антенны, создаваемая передающей антенной определяется соотношением

$$\Pi_{\rm np} = \frac{P_{\rm nep} \cdot \eta_{\rm nep} \cdot G_{\rm nep}}{4 \cdot \pi \cdot R^2} \left[\frac{B_{\rm T}}{M} \right]. \tag{2}$$

Эта плотность потока возбуждает в приемной антенне мощность $P_{np}=\Pi_{np}S_{9\varphi\varphi}$, где $S_{9\varphi\varphi}=G_{np}\cdot\lambda^2/(4\pi)$ — эффективная площадь приемной антенны равная площади фронта волны, с которого антенна забирает мощность. Исходя из этого:

$$P_{\text{BX\Pi p}} = \eta_{\text{пр}} \cdot P_{\text{пр}} = \frac{P_{\text{пер}} \cdot \eta_{\text{пер}} \cdot G_{\text{пер}} \cdot \eta_{\text{пр}} \cdot G_{\text{пр}} \cdot \lambda^2}{(4 \cdot \pi \cdot R)^2} [B_{\text{T}}]$$
(3)

Отношение мощности подводимой к передающей антенне к мощности на выходе приемной антенны называют потерями передачи. При распространении прямой волной они записываются в виде:

$$L_0 = \frac{P_{\text{nep}} \cdot \eta_{\text{nep}} \cdot \eta_{\text{np}}}{P_{\text{np}}} = \frac{(4\pi R)^2}{\lambda^2 \cdot G_{\text{nep}} \cdot G_{\text{np}}},\tag{4}$$

где L_0 – коэффициент основных потерь в свободном пространстве.

В случае реальной среды потери, обусловленные ее свойствами, выражают через множитель ослабления – V. С учетом его коэффициент потерь передачи записывается в виде:

$$L = L_0/V^2 \tag{5}$$

Расчет поля отраженной волны обычно осуществляют совместно с расчетом поля прямой волны и находят суммарное поле в точке приема для приподнятых антенн. В общем случае такая задача должна учитывать достаточно большое число факторов: диаграммы направленности и поляризационные характеристики передающей и приемной антенны, необходимость параметров отражающей поверхности в пределах эллипса существенного при отношении, форму отражающей поверхности и т.д. В качестве первого приближения обычно используют расчет поля при поднятых ненаправленных антенн в приближении плоской поверхности с однородными характеристиками отражения (рисунок 3.2)

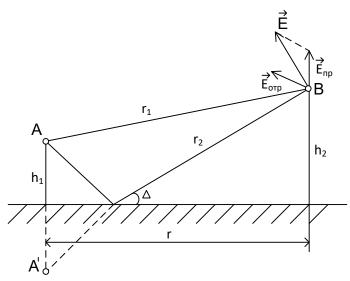


Рисунок 3.2 – Расчет поля при поднятых ненаправленных антенн в приближении плоской поверхности с однородными характеристиками отражения

Будем считать, что высоты подвеса антенн h_1 и h_2 существенно меньше расстояния между ними $(h_1,h_2<< r)$. Передающая антенна (точка A) и приемная антенна (точка B) Находятся в дальней зоне одна у другой и являются ненаправленными или слабонаправленными. Коэффициенты отражения $\dot{R}_{||}^{(\Delta)} = R_{||}^{(\Delta)} \cdot e^{-j\theta_{||}(\Delta)}$ и $\dot{R}_{\perp}^{(\Delta)} = R_{\perp}^{(\Delta)} \cdot e^{-j\theta_{\perp}(\Delta)}$ не меняются в пределах эллипса отражения (если плоскость отражения поверхность Земли, то говорят о коэффициентах отражения для вертикальной и горизонтальной поляризации $\dot{R}_{\rm B}(\Delta)$ и $\dot{R}_{\rm F}(\Delta)$.

Угол возвышения - Δ при принятых условиях определяется из соотношения:

$$tg\Delta \approx sin\Delta \approx (h_1 + h_2)/2$$
 (6)

Поле прямой волны в точке В записывается в виде:

$$\dot{E}_{\rm np} = \frac{\sqrt{60P_{\rm nep}}}{r_1} \cdot e^{-jkr_1} \tag{7}$$

где $k=\frac{2\pi}{\lambda}$ волновое число свободного пространства.

Поле отраженной волны, в свою очередь:

$$\dot{E}_{\text{orp}} = \frac{\sqrt{60P_{\text{пер}}}}{r_2} \cdot e^{-jkr_2} \cdot e^{-j\theta} \tag{8}$$

Для случая, изображенного на рисунке 3.1, $\dot{R} = \dot{R}_{||}$ (или $\dot{R}_{\rm B}$).

Учитывая, что угол Δ достаточно мал, векторы \vec{E}_{np} и \vec{E}_{orp} можно считать параллельными и суммарное поле определяется алгебраическим суммированием: $\dot{E} = \dot{E}_{np} + \dot{E}_{orp}$. Отличием r_1 и r_2 в знаменателях формул (3.6) и (3.7) при $r_1, r_2 >> \lambda$ так же пренебрегаем. Проведя суммирование, получим:

$$\dot{\mathbf{E}} = \frac{\sqrt{60P_{\text{nep}}}}{r} \left[1 + R \cdot e^{-j[k(r_2 - r_1) + \theta]} \right] e^{-jkr_1} \tag{9}$$

Величина, стоящая в квадратных скобках в выражении (3.9) является множителем ослабления для приподнятых антенн. Модуль множителя ослабления записывается в виде:

$$V = \sqrt{1 + R^2 + 2R\cos\left[\frac{2\pi}{\lambda}(r_2 - r_1) + \theta\right]}$$
 (10)

где $\frac{2\pi}{\lambda}(r_2-r_1)$ - называется разностью хода прямой и отраженной волн. Для случая $r>>h_1,h_2$ можно считать: $r_2-r_1 \approx \frac{2h_1h_2}{r}$.

Тогда получим:

$$V = \sqrt{1 + R^2 + 2R\cos\left[\frac{4\pi h_1 h_2}{r\lambda} + \theta\right]}$$
 (11)

Из выражения (3.11) следует, что при изменении h_1,h_2 или г изменение амплитуды поля имеет немонотонный характер. При $\frac{4\pi h_1 h_2}{\lambda r} + \theta = 2m\pi$, где m=1,2,3 и т.д. множитель ослабления максимален $V_{max}=1+R$, а при $\frac{4\pi h_1 h_2}{\lambda r} + \theta = (2n+1)\pi$, где n=1,2,3 и т.д. $-V_{min}=1-R$.

На рисунке 3.3 показана зависимость V(r). Ширина интерференционных лепестков уменьшаются при приближении к передатчику, так как разность хода обратно пропорциональна расстоянию. Одновременно при приближении к источнику значение R уменьшается, а Δ растет, поэтому разница между максимумами и минимумами поля уменьшается.

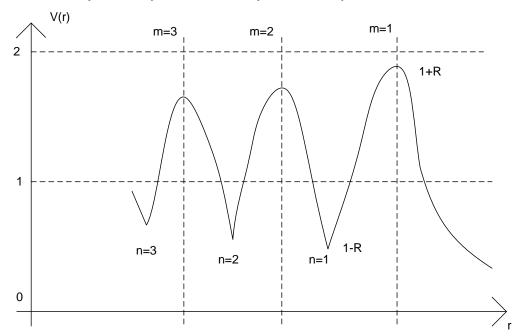


Рисунок 3.3 – Зависимость V(r)

Максимум с m=1 находится на наибольшем удалении. При дальнейшем росте г траектория волн сливаются, разность хода стремится к нулю и множитель ослабления монотонно убывает. Поле в этом случае можно вычислить по формуле Введенского:

$$\dot{\mathbf{E}} = \frac{\sqrt{60P_{\text{nep}}}}{r^2} \cdot \frac{4\pi h_1 h_2}{\lambda} \left[\frac{\mathbf{B}}{\mathbf{M}} \right] \tag{12}$$

Для сферической отражающей поверхности (поверхность Земли) множитель ослабления для приподнятых антенн вычисляется по тем же формулам, но с использованием приведенных высот антенн.

Определение приведенных высот h'_1 и h'_2 понятно на рисунке 3.4. Они приближенно определяются соотношениями:

$$h_1' = h_1 - \frac{r^2}{2R_{3eM}} \cdot \left(\frac{h_1}{h_1 + h_2}\right)^2 \tag{13}$$

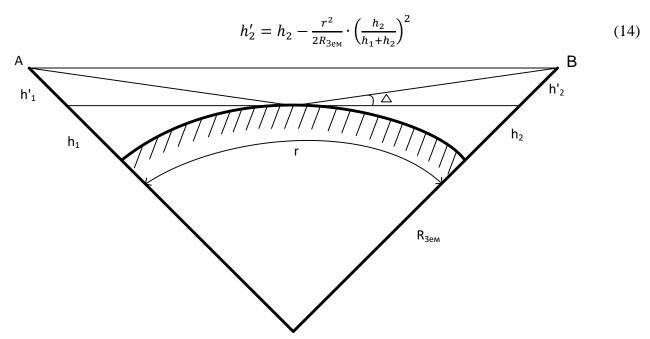


Рисунок 3.4 – Определение приведенных высот h'_1 и h'_2

Остальные параметры определяются следующим образом:

$$\Delta r = r_2 - r_1 = \frac{2h_1'h_2'}{r}$$
 и $tg\Delta = sin\Delta = \frac{h_1' + h_2'}{r}$ (15)

При отражении от сферической поверхности происходит расширение луча, по сравнению с отражением от плоскости. Это учитывается через коэффициент расходимости:

$$D = \frac{1}{\sqrt{1 + \frac{2r^2h_1'h_2'}{R_{3em}(h_1' + h_2')^3}}}$$
 (16)

В формулах (3.10), (3.11), при этом необходимо вместо модуля коэффициента отражения - R подставлять произведение D·R.

Лабораторная работа по теме «Исследование и сравнение параметров волн в коаксиальной и волноводной линиях передачи»

1. Цель работы:

- 1.1 Получение базовых навыков работы с СВЧ генератором и измерительным оборудованием.
 - 1.2 Исследование структуры поля в прямоугольном волноводе
 - 1.3 Исследование структуры поля в коаксиальном кабеле.

2 Литература:

- 1. Баранов С.А. Устройства СВЧ и антенны: учебное пособие М. Горячая линия Телеком, 2018, 344с.
- 2. Основы теории антенн и распространения радиоволн: учебное пособие / В. П. Кубанов, В. А. Ружников, М. Ю. Сподобаев, Ю. М. Сподобаев; под редакцией В. П. Кубанов. Самара: Поволжский государственный университет телекоммуникаций и информатики, 2016. 257 с.
- 3. Буянов, Ю. И. Распространение радиоволн и антенно-фидерные устройства : учебное пособие / Ю. И. Буянов, Г. Г. Гошин. Томск : Томский государственный университет систем управления и радиоэлектроники, 2013. 300 с.

3. Порядок выполнения работы:

- 3.1 Повторить разделы курса «Линии передачи. Основные характеристики линий передач», «Классификация линий передачи».
 - 3.2 Подготовить бланк отчета.
 - 3.3 Ответить на вопросы допуска:

Дать определение линии передачи.

Указать разницу между регулярной и нерегулярной линиями.

Выбрать признак классификации типов волн в линии передачи.

Конструктивные особенности линий, способных поддерживать волны типа

4. Теоретическая часть

- 4.1 Собрать схему для определения сопротивления нагрузки, представленную на рисунке 1. Вместо нагрузки подключить на выход измерительной линии короткозамыкающую пластинку.
- 4.2 Включить лабораторную установку согласно пунктам А.3-А.7 *Приложения А*, выбрав режим работы «Синтез частот и индикатор мощности».
- 4.3В соответствии с п.А.14. настроить синтезатор на частоту f_0 , лежащую в пределах от 9800 МГц до 10200 МГц. Включить синтезатор частот, нажав кнопку Старт (рисунок А.1). В измерительную линию поступают СВЧ колебания заданной частоты и мощности.
- 4.4 Перемещая измерительную головку измерительной линии, поместить ее в положение, соответствующее максимальным показаниям регистратора. Вращая гайки регулировки контура зонда и контура детектора, добиться максимального тока регистратора, настроив измерительную линию на частоту f_0 . При необходимости изменить уровень выходной мощности синтезатора частот.
- 4.5 Определить положение опорной плоскости (узла напряженности электрического поля при коротком замыкании) z_0 в средней части измерительной линии (рисунок 9), положение соседнего узла z'_0 . Вычислить длину волны в волноводе как удвоенное расстояние между соседними узлами стоячей волны:

$$\lambda_{\scriptscriptstyle g} = |z_0 - z_0'|.$$

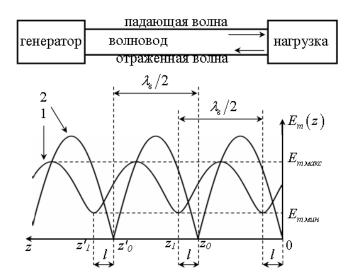


Рисунок 1 — Распределение амплитуды напряженности электрического поля вдоль волновода для режимов стоячей волны и короткого замыкания

4.6 Отключить синтезатор частот, нажав кнопку Стоп (рисунок А.14). Заменить короткозамыкающую пластинку на исследуемую нагрузку. Включить синтезатор частот, нажав кнопку Старт (рисунок А.14).

4.7 Определить положение ближайшего к опорной плоскости z_0 минимума стоячей волны z_1 со стороны синтезатора частот. Вычислить величину l:

$$l = |z_0 - z_1|.$$

Расстояние l равно сдвигу минимума в сторону нагрузки при замене нагрузки короткозамыкающей пластиной.

4.8 Перемещая измерительную головку вдоль линии определить значения $q_{\text{мин}}$ и $q_{\text{макс}}$ показаний индикатора, вычислить КСВ в волноводе в случае квадратичности характеристики детектора по формуле:

$$\rho = \sqrt{\frac{q_{\text{MAKC}}}{q_{\text{MUH}}}},$$

где $q_{\text{макс}}$ и $q_{\text{мин}}$ — показания регистратора измерительной линии в максимуме и минимуме стоячей волны.

4.9 Используя найденные значения КСВ, l и λ_{s} , определить и записать возможные сечения включения согласующей реактивности (штыря) — значения l_{C} и l_{L} .

Согласующая реактивность емкостного характера должна быть помещена на расстоянии от нагрузки:

$$l_c = l + \frac{\lambda_e}{2\pi} arctg \sqrt{1/\rho} + p \frac{\lambda_e}{2}$$
.

Реактивность индуктивного характера должна быть помещена на расстоянии:

$$l_L = l - \frac{\lambda_e}{2\pi} arctg \sqrt{1/\rho} + p \frac{\lambda_e}{2},$$

где p=0, 1, 2,...

- 4.10 Выключить синтезатор частот, нажав кнопку Стоп (рисунок А.14). Закрыть окно синтезатора частот и индикатора мощности.
- 4.11 Выполнить действия, описанные в пунктах A.6, A.7, выбрав режим работы «Модуль КП и КО».
 - 4.12 Если необходимо, загрузить калибровочные данные детектора, согласно п.А.8.
- 4.13 Установить на вкладке «Параметры прибора» (рисунок А.5, п.А.9) частотный диапазон 812 ГГц, количество точек 501, выходная мощность 0 дБм.
- 4.14 В соответствии с п.А.10 произвести калибровку измерителя P2M-18 в полосе частот 8-12 ГГц для измерения модуля коэффициента отражения.
- 4.15 Собрать схему установки для изучения процесса согласования нагрузки, (рисунок 2). Нажать кнопку **Старт** (10 на рисунке 4) на панели инструментов. При этом на экране ноутбука можно наблюдать зависимость КСВ от частоты в пределах заданного диапазона.
- 4.16 Перемещая согласующий штырь вдоль трансформатора, установить его на расстоянии $l_C(l_L)$ от сечения нагрузки. Согласно А.13 сохранить зависимость КСВ(f).
- 4.17 Изменяя глубину погружения штыря, добиться уменьшения КСВ на частоте f_0 до минимально возможного значения и сохранить результаты измерений согласно п.А.13.
 - 4.18 Занести экспериментально полученные и рассчитанные данные в таблицу 1.

Таблица 1 — Узкополосное согласование нагрузки. Частота $f_0 =$ Мгц

Z ₀ ,	Z'0, MM	λ_{B} , MM	Z1, MM	l,	q _{макс} , отн. ед.	q _{мин} , отн. ед.	ρ	$Z_{\scriptscriptstyle H}/Z_{\scriptscriptstyle X}$	l _C ,	l _L ,	Рнесогл	рсогл	$\Delta f_{ m corл}/f_0$

4.19 Вычислить нормированное значение сопротивления нагрузки $Z_{t}/Z_{x}=R_{t}/Z_{x}+iX_{t}/Z_{x}$ и занести его в таблицу 1:

$$R_{H} = \frac{\rho}{\rho^{2} \cos^{2}\left(\frac{2\pi}{\lambda_{e}}l\right) + \sin^{2}\left(\frac{2\pi}{\lambda_{e}}l\right)},$$

$$X_{H} = -\frac{\left(\rho^{2} - 1\right)\sin\left(\frac{2\pi}{\lambda_{e}}l\right)\cos\left(\frac{2\pi}{\lambda_{e}}l\right)}{\rho^{2}\cos^{2}\left(\frac{2\pi}{\lambda_{e}}l\right) + \sin^{2}\left(\frac{2\pi}{\lambda_{e}}l\right)}.$$

4.20 По снятым экспериментально зависимостям KCB(f) определить KCB при несогласованной $\rho_{\text{несогл}}$ и согласованной $\rho_{\text{согл}}$ нагрузках, а также диапазон частот в относительных единицах $\Delta f_{\text{согл}}/f_0$, в пределах которого достигнуто согласование.

5 Контрольные вопросы:

- 5.1 Что такое одноволновый режим в волноводе?
- 5.2 Какой тип волны является основным в прямоугольном волноводе?
- 5.3 Что такое коэффициент отражения, коэффициент бегущей волны, коэффициент стоячей волны?
- 5.4 Чему равен коэффициент бегущей (стоячей) волны в волноводе с идеально согласованной нагрузкой?
 - 5.5 Что такое нормированное сопротивление нагрузки?
- 5.6 Связь сопротивления нагрузки с коэффициентом отражения и коэффициентом стоячей волны.
 - 5.7 Почему возникает необходимость в согласовании линий передачи?
 - 5.8Параметры, характеризующие качество согласования.
 - 5.9 Способы согласования.
- 5.10 Где необходимо включать согласующее устройство для достижения лучшего качества согласования?
 - 5.11 Узкополосное согласование. Основные согласующие устройства.
- 5.12 В чем заключается метод согласования линии с помощью параллельной реактивности?
 - 5.13 В каких случаях согласующий штырь является емкостным, в каких индуктивным?

8 Содержание отчета:

- 6.1 Название лабораторной работы.
- 6.2 Цель работы.
- 6.3 Список используемых приборов.
- 6.4 Схему лабораторного макета с учетом условных графических обозначений.
- 6.5 Формулы, результаты расчетов и графики согласно пункту 6.
- 6.6 Обработка результатов измерений согласно пункту 6.
- 6.7 Таблицы согласно пункту 6.

- 6.8 Вывод по результатам выполненной работы
- 6.9 Ответы на контрольные вопросы.

4.1. Типовые материалы для проведения промежуточной аттестации обучающихся

ПК-1 Способен к проведению профилактических работ на оборудовании связи

Знает:

 Знает теоретические основы электросвязи и инфокоммуникационных технологий, основы построения взаимосвязанных телекоммуникационных сетей
 Умеет:

- проводить сравнительный анализ свойств и характеристик материалов и элементов телекоммуникационных систем для эксплуатации и развития сетевых платформ, систем и сетей передачи данных;
- анализировать структуру электромагнитного поля в различных линиях передачи включая полые и диэлектрические волноводы, а также волоконно-оптические направляющие системы.

Владеет:

- навыками разработки электрических принципиальных схем устройств связи;
- навыками практической работы с современной измерительной аппаратурой.

ПК-3 Способен к выявлению, локализации и устранению неисправности на оборудовании связи, восстановлению схемы организации связи

Знает:

- -принципы действия, конструкции и параметры компонентов и устройств телекоммуникационных систем);
- новейшее оборудование и программное обеспечение;
- общие принципы функционирования аппаратных, программных и программноаппаратных средств сетевых платформ;
- -функции антенн в составе радиоканале.

первичные и вторичные характеристики антенн.

-работу антенн в режиме прием и передачи.

Умеет:

- собирать и анализировать данные о работе узлов сети;
- рассчитывать параметры электрических цепей узлов сетей связи;
- использовать нормативно-техническую документацию при разработке инструкции по эксплуатационно-техническому обслуживанию;
- использовать современные информационно-коммуникационные технологии, в том числе специализированное программное обеспечение для решения задач проектирования и проведения расчетов;
- осуществлять мониторинг и анализировать статистику основных показателей эффективности радиосистем и систем передачи данных;
- разрабатывать мероприятия по поддержанию системы на требуемом уровне

Владеет: – навыками разработки схемы организации связи и интеграции в нее новых элементов;

– навыками проведения регламентных работ

Типовые вопросы и задания к экзамену:

- 1.Обобщенная структура радиоканала. Основные параметры составляющих радиоканала: фидерных устройств, антенн и среды распространения и их влияние на качественные характеристики систем радиосвязи.
- 2.Векторы электромагнитного поля, физические законы, лежащие в основе системы уравнений электродинамики.
- 3. Гармонические поля, их математическое моделирование, материальные уравнения и теоремы электродинамики для гармонических полей.
- 4. Линии передачи и их электрические характеристики. Основные типы линий передачи, использующиеся в фидерных системах. Работа линий передачи в режимах передачи мощности и трансформации сопротивлений.
 - 5. Согласования в фидерных трактах.
- 6.Матричное описание цепей и устройств. Примеры выполнения фидеров для систем радиосвязи различных частотных диапазонов и назначения.
- 7.Плоская волна, как предельный случай сферической волны на локальном участке фронта.
 - 8. Решение волнового уравнения для плоских волн.
 - 9. Свойства поля плоской волны в идеальных и реальных средах.
 - 10. Падение плоской волны на плоскую границу раздела сред.
- 11.Особенности решения уравнений электродинамики для задач излучения. 12.Моделирование реальных источников поля с помощью элементарных излучателей. 13.Характеристики поля элементарных излучателей и их физические аналоги: элементарные электрический и магнитный излучатели, элементарный участок фронта волны (элемент Гюйгенса), турникетный излучатель.
- 14. Возбуждение колебаний в линиях передачи с использованием элементарных излучателей.
 - 15. Функции антенн в составе радиоканале.
- 16.Первичные и вторичные характеристики антенн. Работа антенны в режиме приема. 17.Вибраторные антенны: распределение тока, диаграмма направленности и входное сопротивление вибратора, связанные вибраторы, конструктивное выполнение вибраторов. 18. повышения направленности антенн.
 - 19. Линейные и апертурные антенны с непрерывным распределением токов.
- 20. Антенные решетки, особенности управления диаграммой направленности антенных решеток по сравнению с антеннами с непрерывным распределением токов.
- 21. Классификация радиоволн по частотным диапазонам и механизмам распространения. Основные потери в среде распространения.
- 22. Расстояние прямой видимости, область существенная при распространении радиоволн. 23. Связь с приподнятыми антеннами, влияние сферичности Земли и параметров подстилающей поверхности.
 - 24. Электрофизические характеристики атмосферы, их зависимость от высоты.
- 25. Основные отличия электрофизических характеристик тропосферы, стратосферы и ионосферы, влияние их на распространение радиоволн.
- 26.Использование в системах связи плавных изменений параметров атмосферы и наличия в ней локальных неоднородностей.
- 27. Факторы, определяющие затухание радиоволн: поглощение в атмосфере и земной поверхности, влияние тропосферной рефракции и рассеяния на неоднородностях. 28. Зависимость затухания от частоты и поляризации поля.

- 29.Помехи в канале распространения. Природные и индустриальные помехи. Пространственное и частотное распределение помех.
- 30. Учет характеристик радиоканала при частотно-территориальном планировании и обеспечении электромагнитной совместимости систем радиосвязи.

Банк контрольных вопросов, заданий и иных материалов, используемых в процессе процедур текущего контроля и промежуточной аттестации находится в учебно-методическом комплексе дисциплины и/или представлен в электронной информационно-образовательной среде по URI: http://www.aup.uisi.ru/.

4.2. Методические материалы проведения текущего контроля и промежуточной аттестации обучающихся

Перечень методических материалов для подготовки к текущему контролю и промежуточной аттестации:

- 1. Методические указания к выполнению практических работ по дисциплине «Антенны и распространение радиоволн». –URL: http://www.aup.uisi.ru/.
- 2. Методические указания к выполнению лабораторных работ по дисциплине «Антенны и распространение радиоволн». –URL: http://www.aup.uisi.ru/.